/* impl.c.vmfr: VIRTUAL MEMORY MAPPING FOR FreeBSD * * $Id$ * Copyright (c) 2001 Ravenbrook Limited. * * .purpose: This is the implementation of the virtual memory mapping * interface (vm.h) for FreeBSD. It was created by copying vmli.c (the * DIGITAL UNIX implementation) as that seemed to be closest. * * .design: See design.mps.vm. .design.freebsd: mmap(2) is used to * reserve address space by creating a mapping with page access none. * mmap(2) is used to map pages onto store by creating a copy-on-write * (MAP_PRIVATE) mapping with the flag MAP_ANON. * * .assume.not-last: The implementation of VMCreate assumes that * mmap() will not choose a region which contains the last page * in the address space, so that the limit of the mapped area * is representable. * * .assume.mmap.err: ENOMEM is the only error we really expect to * get from mmap. The others are either caused by invalid params * or features we don't use. See mmap(2) for details. * * .remap: Possibly this should use mremap to reduce the number of * distinct mappings. According to our current testing, it doesn't * seem to be a problem. */ /* for mmap(2), munmap(2) */ #include #include /* for errno(2) */ #include /* for getpagesize(3) */ #include #include "mpm.h" #ifndef MPS_OS_FR #error "vmfr.c is FreeBSD specific, but MPS_OS_FR is not set" #endif SRCID(vmfr, "$Id$"); /* VMStruct -- virtual memory structure */ #define VMSig ((Sig)0x519B3999) /* SIGnature VM */ typedef struct VMStruct { Sig sig; /* design.mps.sig */ Align align; /* page size */ Addr base, limit; /* boundaries of reserved space */ Size reserved; /* total reserved address space */ Size mapped; /* total mapped memory */ } VMStruct; /* VMAlign -- return page size */ Align VMAlign(VM vm) { return vm->align; } /* VMCheck -- check a VM */ Bool VMCheck(VM vm) { CHECKS(VM, vm); CHECKL(vm->base != 0); CHECKL(vm->limit != 0); CHECKL(vm->base < vm->limit); CHECKL(vm->mapped <= vm->reserved); CHECKL(SizeIsP2(vm->align)); CHECKL(AddrIsAligned(vm->base, vm->align)); CHECKL(AddrIsAligned(vm->limit, vm->align)); return TRUE; } /* VMCreate -- reserve some virtual address space, and create a VM structure */ Res VMCreate(VM *vmReturn, Size size) { Align align; VM vm; int pagesize; void *addr; Res res; AVER(vmReturn != NULL); /* Find out the page size from the OS */ pagesize = getpagesize(); /* check the actual returned pagesize will fit in an object of */ /* type Align. */ AVER(pagesize > 0); AVER((unsigned long)pagesize <= (unsigned long)(Align)-1); /* Note implicit conversion from "int" to "Align". */ align = pagesize; AVER(SizeIsP2(align)); size = SizeAlignUp(size, align); if((size == 0) || (size > (Size)(size_t)-1)) return ResRESOURCE; /* Map in a page to store the descriptor on. */ addr = mmap(0, (size_t)SizeAlignUp(sizeof(VMStruct), align), PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); if(addr == MAP_FAILED) { int e = errno; AVER(e == ENOMEM); /* .assume.mmap.err */ return ResMEMORY; } vm = (VM)addr; vm->align = align; /* See .assume.not-last. */ addr = mmap(0, (size_t)size, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0); if(addr == MAP_FAILED) { int e = errno; AVER(e == ENOMEM); /* .assume.mmap.err */ res = ResRESOURCE; goto failReserve; } vm->base = (Addr)addr; vm->limit = AddrAdd(vm->base, size); vm->reserved = size; vm->mapped = (Size)0; vm->sig = VMSig; AVERT(VM, vm); EVENT_PAA(VMCreate, vm, vm->base, vm->limit); *vmReturn = vm; return ResOK; failReserve: (void)munmap((void *)vm, (size_t)SizeAlignUp(sizeof(VMStruct), align)); return res; } /* VMDestroy -- release all address space and destroy VM structure */ void VMDestroy(VM vm) { int r; AVERT(VM, vm); AVER(vm->mapped == (Size)0); /* This appears to be pretty pointless, since the descriptor */ /* page is about to vanish completely. However, munmap might fail */ /* for some reason, and this would ensure that it was still */ /* discovered if sigs were being checked. */ vm->sig = SigInvalid; r = munmap((void *)vm->base, (size_t)AddrOffset(vm->base, vm->limit)); AVER(r == 0); r = munmap((void *)vm, (size_t)SizeAlignUp(sizeof(VMStruct), vm->align)); AVER(r == 0); EVENT_P(VMDestroy, vm); } /* VMBase -- return the base address of the memory reserved */ Addr VMBase(VM vm) { AVERT(VM, vm); return vm->base; } /* VMLimit -- return the limit address of the memory reserved */ Addr VMLimit(VM vm) { AVERT(VM, vm); return vm->limit; } /* VMReserved -- return the amount of memory reserved */ Size VMReserved(VM vm) { AVERT(VM, vm); return vm->reserved; } /* VMMapped -- return the amount of memory actually mapped */ Size VMMapped(VM vm) { AVERT(VM, vm); return vm->mapped; } /* VMMap -- map the given range of memory */ Res VMMap(VM vm, Addr base, Addr limit) { Size size; AVERT(VM, vm); AVER(sizeof(void *) == sizeof(Addr)); AVER(base < limit); AVER(base >= vm->base); AVER(limit <= vm->limit); AVER(AddrIsAligned(base, vm->align)); AVER(AddrIsAligned(limit, vm->align)); size = AddrOffset(base, limit); if(mmap((void *)base, (size_t)size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0) == MAP_FAILED) { AVER(errno == ENOMEM); /* .assume.mmap.err */ return ResMEMORY; } vm->mapped += size; EVENT_PAA(VMMap, vm, base, limit); return ResOK; } /* VMUnmap -- unmap the given range of memory */ void VMUnmap(VM vm, Addr base, Addr limit) { Size size; void *addr; AVERT(VM, vm); AVER(base < limit); AVER(base >= vm->base); AVER(limit <= vm->limit); AVER(AddrIsAligned(base, vm->align)); AVER(AddrIsAligned(limit, vm->align)); size = AddrOffset(base, limit); /* see design.mps.vmo1.fun.unmap.offset */ addr = mmap((void *)base, (size_t)size, PROT_NONE, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0); AVER(addr == (void *)base); vm->mapped -= size; EVENT_PAA(VMUnmap, vm, base, limit); }