mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-06 22:41:06 -08:00
Use a dedicated type to represent interpreted-function values
Change `function` so that when evaluating #'(lambda ...) we return an object of type `interpreted-function` rather than a list starting with one of `lambda` or `closure`. The new type reuses the existing PVEC_CLOSURE (nee PVEC_COMPILED) tag and tries to align the corresponding elements: - the arglist, the docstring, and the interactive-form go in the same slots as for byte-code functions. - the body of the function goes in the slot used for the bytecode string. - the lexical context goes in the slot used for the constants of bytecoded functions. The first point above means that `help-function-arglist`, `documentation`, and `interactive-form`s don't need to distinguish interpreted and bytecode functions any more. Main benefits of the change: - We can now reliably distinguish a list from a function value. - `cl-defmethod` can dispatch on `interactive-function` and `closure`. Dispatch on `function` also works now for interpreted functions but still won't work for functions represented as lists or as symbols, of course. - Function values are now self-evaluating. That was alrready the case when byte-compiled, but not when interpreted since (eval '(closure ...)) signals a void-function error. That also avoids false-positive warnings about "don't quote your lambdas" when doing things like `(mapcar ',func ...)`. * src/eval.c (Fmake_interpreted_closure): New function. (Ffunction): Use it and change calling convention of `Vinternal_make_interpreted_closure_function`. (FUNCTIONP, Fcommandp, eval_sub, funcall_general, funcall_lambda) (Ffunc_arity, lambda_arity): Simplify. (funcall_lambda): Adjust to new representation. (syms_of_eval): `defsubr` the new function. Remove definition of `Qclosure`. * lisp/emacs-lisp/cconv.el (cconv-make-interpreted-closure): Change calling convention and use `make-interpreted-closure`. * src/data.c (Fcl_type_of): Distinguish `byte-code-function`s from `interpreted-function`s. (Fclosurep, finterpreted_function_p): New functions. (Fbyte_code_function_p): Don't be confused by `interpreted-function`s. (Finteractive_form, Fcommand_modes): Simplify. (syms_of_data): Define new type symbols and `defsubr` the two new functions. * lisp/emacs-lisp/cl-print.el (cl-print-object) <interpreted-function>: New method. * lisp/emacs-lisp/oclosure.el (oclosure): Refine the parent to be `closure`. (oclosure--fix-type, oclosure-type): Simplify. (oclosure--copy, oclosure--get, oclosure--set): Adjust to new representation. * src/callint.c (Fcall_interactively): Adjust to new representation. * src/lread.c (bytecode_from_rev_list): * lisp/simple.el (function-documentation): * lisp/help.el (help-function-arglist): Remove the old `closure` case and adjust the byte-code case so it handles `interpreted-function`s. * lisp/emacs-lisp/cl-preloaded.el (closure): New type. (byte-code-function): Add it as a parent. (interpreted-function): Adjust parent (the type itself was already added earlier by accident). * lisp/emacs-lisp/bytecomp.el (byte-compile--reify-function): Adjust to new representation. (byte-compile): Use `interpreted-function-p`. * lisp/emacs-lisp/byte-opt.el (byte-compile-inline-expand): Adjust to new representation. (side-effect-free-fns): Add `interpreted-function-p` and `closurep`. * src/profiler.c (trace_hash, ffunction_equal): Simplify. * lisp/profiler.el (profiler-function-equal): Simplify. * lisp/emacs-lisp/nadvice.el (advice--interactive-form-1): Use `interpreted-function-p`; adjust to new representation; and take advantage of the fact that function values are now self-evaluating. * lisp/emacs-lisp/lisp-mode.el (closure): Remove `lisp-indent-function` property. * lisp/emacs-lisp/disass.el (disassemble-internal): Adjust to new representation. * lisp/emacs-lisp/edebug.el (edebug--strip-instrumentation): Use `interpreted-function-p`. * lisp/emacs-lisp/comp-common.el (comp-known-type-specifiers): Add `closurep` and `interpreted-function-p`. * test/lisp/help-fns-tests.el (help-fns-test-lisp-defun): Adjust to more precise type info in `describe-function`. * test/lisp/erc/resources/erc-d/erc-d-tests.el (erc-d--render-entries): Use `interpreted-function-p`. * test/lisp/emacs-lisp/macroexp-resources/vk.el (vk-f4, vk-f5): Don't hardcode function values. * doc/lispref/functions.texi (Anonymous Functions): Don't suggest that function values are lists. Reword "self-quoting" to reflect the fact that #' doesn't return the exact same object. Update examples with the new shape of the return value. * doc/lispref/variables.texi (Lexical Binding): * doc/lispref/lists.texi (Rearrangement): * doc/lispref/control.texi (Handling Errors): Update examples to reflect new representation of function values.
This commit is contained in:
parent
2fa839c188
commit
f2bccae22b
31 changed files with 435 additions and 273 deletions
|
|
@ -164,7 +164,7 @@ Earlier variables shadow later ones with the same name.")
|
|||
;; The byte-code will be really inlined in byte-compile-unfold-bcf.
|
||||
(byte-compile--check-arity-bytecode form fn)
|
||||
`(,fn ,@(cdr form)))
|
||||
((or `(lambda . ,_) `(closure . ,_))
|
||||
((pred interpreted-function-p)
|
||||
;; While byte-compile-unfold-bcf can inline dynbind byte-code into
|
||||
;; letbind byte-code (or any other combination for that matter), we
|
||||
;; can only inline dynbind source into dynbind source or lexbind
|
||||
|
|
@ -1870,6 +1870,7 @@ See Info node `(elisp) Integer Basics'."
|
|||
charsetp
|
||||
;; data.c
|
||||
arrayp atom bare-symbol-p bool-vector-p bufferp byte-code-function-p
|
||||
interpreted-function-p closurep
|
||||
byteorder car-safe cdr-safe char-or-string-p char-table-p
|
||||
condition-variable-p consp eq floatp indirect-function
|
||||
integer-or-marker-p integerp keywordp listp markerp
|
||||
|
|
|
|||
|
|
@ -2915,9 +2915,14 @@ otherwise, print without quoting."
|
|||
(defun byte-compile--reify-function (fun)
|
||||
"Return an expression which will evaluate to a function value FUN.
|
||||
FUN should be an interpreted closure."
|
||||
(pcase-let* ((`(closure ,env ,args . ,body) fun)
|
||||
(`(,preamble . ,body) (macroexp-parse-body body))
|
||||
(renv ()))
|
||||
(let* ((args (aref fun 0))
|
||||
(body (aref fun 1))
|
||||
(env (aref fun 2))
|
||||
(docstring (function-documentation fun))
|
||||
(iform (interactive-form fun))
|
||||
(preamble `(,@(if docstring (list docstring))
|
||||
,@(if iform (list iform))))
|
||||
(renv ()))
|
||||
;; Turn the function's closed vars (if any) into local let bindings.
|
||||
(dolist (binding env)
|
||||
(cond
|
||||
|
|
@ -2954,11 +2959,11 @@ If FORM is a lambda or a macro, byte-compile it as a function."
|
|||
(if (symbolp form) form "provided"))
|
||||
fun)
|
||||
(t
|
||||
(when (or (symbolp form) (eq (car-safe fun) 'closure))
|
||||
(when (or (symbolp form) (interpreted-function-p fun))
|
||||
;; `fun' is a function *value*, so try to recover its
|
||||
;; corresponding source code.
|
||||
(when (setq lexical-binding (eq (car-safe fun) 'closure))
|
||||
(setq fun (byte-compile--reify-function fun)))
|
||||
(setq lexical-binding (not (null (aref fun 2))))
|
||||
(setq fun (byte-compile--reify-function fun))
|
||||
(setq need-a-value t))
|
||||
;; Expand macros.
|
||||
(setq fun (byte-compile-preprocess fun))
|
||||
|
|
@ -5148,7 +5153,6 @@ binding slots have been popped."
|
|||
;; `arglist' is the list of arguments (or t if not recognized).
|
||||
;; `body' is the body of `lam' (or t if not recognized).
|
||||
((or `(lambda ,arglist . ,body)
|
||||
;; `(closure ,_ ,arglist . ,body)
|
||||
(and `(internal-make-closure ,arglist . ,_) (let body t))
|
||||
(and (let arglist t) (let body t)))
|
||||
lam))
|
||||
|
|
|
|||
|
|
@ -902,7 +902,7 @@ lexically and dynamically bound symbols actually used by FORM."
|
|||
(delete-dups cconv--dynbindings)))))
|
||||
(cons fvs dyns)))))
|
||||
|
||||
(defun cconv-make-interpreted-closure (fun env)
|
||||
(defun cconv-make-interpreted-closure (args body env docstring iform)
|
||||
"Make a closure for the interpreter.
|
||||
This is intended to be called at runtime by the ELisp interpreter (when
|
||||
the code has not been compiled).
|
||||
|
|
@ -911,22 +911,27 @@ ENV is the runtime representation of the lexical environment,
|
|||
i.e. a list whose elements can be either plain symbols (which indicate
|
||||
that this symbol should use dynamic scoping) or pairs (SYMBOL . VALUE)
|
||||
for the lexical bindings."
|
||||
(cl-assert (eq (car-safe fun) 'lambda))
|
||||
(cl-assert (consp body))
|
||||
(cl-assert (listp args))
|
||||
(let ((lexvars (delq nil (mapcar #'car-safe env))))
|
||||
(if (or (null lexvars)
|
||||
;; Functions with a `:closure-dont-trim-context' marker
|
||||
;; should keep their whole context untrimmed (bug#59213).
|
||||
(and (eq :closure-dont-trim-context (nth 2 fun))
|
||||
;; Check the function doesn't just return the magic keyword.
|
||||
(nthcdr 3 fun)))
|
||||
(if (or
|
||||
;; Functions with a `:closure-dont-trim-context' marker
|
||||
;; should keep their whole context untrimmed (bug#59213).
|
||||
(and (eq :closure-dont-trim-context (car body))
|
||||
;; Check the function doesn't just return the magic keyword.
|
||||
(cdr body)
|
||||
;; Drop the magic marker from the closure.
|
||||
(setq body (cdr body)))
|
||||
;; There's no var to capture, so skip the analysis.
|
||||
(null lexvars))
|
||||
;; The lexical environment is empty, or needs to be preserved,
|
||||
;; so there's no need to look for free variables.
|
||||
;; Attempting to replace ,(cdr fun) by a macroexpanded version
|
||||
;; causes bootstrap to fail.
|
||||
`(closure ,env . ,(cdr fun))
|
||||
;; Attempting to replace body by a macroexpanded version
|
||||
;; caused bootstrap to fail.
|
||||
(make-interpreted-closure args body env docstring iform)
|
||||
;; We could try and cache the result of the macroexpansion and
|
||||
;; `cconv-fv' analysis. Not sure it's worth the trouble.
|
||||
(let* ((form `#',fun)
|
||||
(let* ((form `#'(lambda ,args ,iform . ,body))
|
||||
(expanded-form
|
||||
(let ((lexical-binding t) ;; Tell macros which dialect is in use.
|
||||
;; Make the macro aware of any defvar declarations in scope.
|
||||
|
|
@ -935,10 +940,10 @@ for the lexical bindings."
|
|||
(append env macroexp--dynvars) env)))
|
||||
(macroexpand-all form macroexpand-all-environment)))
|
||||
;; Since we macroexpanded the body, we may as well use that.
|
||||
(expanded-fun-cdr
|
||||
(expanded-fun-body
|
||||
(pcase expanded-form
|
||||
(`#'(lambda . ,cdr) cdr)
|
||||
(_ (cdr fun))))
|
||||
(`#'(lambda ,_args ,_iform . ,newbody) newbody)
|
||||
(_ body)))
|
||||
|
||||
(dynvars (delq nil (mapcar (lambda (b) (if (symbolp b) b)) env)))
|
||||
(fvs (cconv-fv expanded-form lexvars dynvars))
|
||||
|
|
@ -946,7 +951,8 @@ for the lexical bindings."
|
|||
(cdr fvs))))
|
||||
;; Never return a nil env, since nil means to use the dynbind
|
||||
;; dialect of ELisp.
|
||||
`(closure ,(or newenv '(t)) . ,expanded-fun-cdr)))))
|
||||
(make-interpreted-closure args expanded-fun-body (or newenv '(t))
|
||||
docstring iform)))))
|
||||
|
||||
|
||||
(provide 'cconv)
|
||||
|
|
|
|||
|
|
@ -444,13 +444,24 @@ For this build of Emacs it's %dbit."
|
|||
)
|
||||
(cl--define-built-in-type compiled-function (function)
|
||||
"Abstract type of functions that have been compiled.")
|
||||
(cl--define-built-in-type byte-code-function (compiled-function)
|
||||
(cl--define-built-in-type closure (function)
|
||||
"Abstract type of functions represented by a vector-like object.
|
||||
You can access the object's internals with `aref'.
|
||||
The fields are used as follows:
|
||||
|
||||
0 [args] Argument list (either a list or an integer)
|
||||
1 [code] Either a byte-code string or a list of Lisp forms
|
||||
2 [constants] Either vector of constants or a lexical environment
|
||||
3 [stackdepth] Maximum amount of stack depth used by the byte-code
|
||||
4 [docstring] The documentation, or a reference to it
|
||||
5 [iform] The interactive form (if present)")
|
||||
(cl--define-built-in-type byte-code-function (compiled-function closure)
|
||||
"Type of functions that have been byte-compiled.")
|
||||
(cl--define-built-in-type subr (atom)
|
||||
"Abstract type of functions compiled to machine code.")
|
||||
(cl--define-built-in-type module-function (function)
|
||||
"Type of functions provided via the module API.")
|
||||
(cl--define-built-in-type interpreted-function (function)
|
||||
(cl--define-built-in-type interpreted-function (closure)
|
||||
"Type of functions that have not been compiled.")
|
||||
(cl--define-built-in-type special-form (subr)
|
||||
"Type of the core syntactic elements of the Emacs Lisp language.")
|
||||
|
|
|
|||
|
|
@ -237,6 +237,38 @@ into a button whose action shows the function's disassembly.")
|
|||
'byte-code-function object)))))
|
||||
(princ ")" stream)))
|
||||
|
||||
(cl-defmethod cl-print-object ((object interpreted-function) stream)
|
||||
(unless stream (setq stream standard-output))
|
||||
(princ "#f(lambda " stream)
|
||||
(let ((args (help-function-arglist object 'preserve-names)))
|
||||
;; It's tempting to print the arglist from the "usage" info in the
|
||||
;; doc (e.g. for `&key` args), but that only makes sense if we
|
||||
;; *don't* print the body, since otherwise the body will tend to
|
||||
;; refer to args that don't appear in the arglist.
|
||||
(if args
|
||||
(prin1 args stream)
|
||||
(princ "()" stream)))
|
||||
(let ((env (aref object 2)))
|
||||
(if (null env)
|
||||
(princ " :dynbind" stream)
|
||||
(princ " " stream)
|
||||
(cl-print-object
|
||||
(vconcat (mapcar (lambda (x) (if (consp x) (list (car x) (cdr x)) x))
|
||||
env))
|
||||
stream)))
|
||||
(let* ((doc (documentation object 'raw)))
|
||||
(when doc
|
||||
(princ " " stream)
|
||||
(prin1 doc stream)))
|
||||
(let ((inter (interactive-form object)))
|
||||
(when inter
|
||||
(princ " " stream)
|
||||
(cl-print-object inter stream)))
|
||||
(dolist (exp (aref object 1))
|
||||
(princ " " stream)
|
||||
(cl-print-object exp stream))
|
||||
(princ ")" stream))
|
||||
|
||||
;; This belongs in oclosure.el, of course, but some load-ordering issues make it
|
||||
;; complicated.
|
||||
(cl-defmethod cl-print-object ((object accessor) stream)
|
||||
|
|
|
|||
|
|
@ -118,7 +118,9 @@ Used to modify the compiler environment."
|
|||
(buffer-substring
|
||||
(function ((or integer marker) (or integer marker)) string))
|
||||
(bufferp (function (t) boolean))
|
||||
(closurep (function (t) boolean))
|
||||
(byte-code-function-p (function (t) boolean))
|
||||
(interpreted-function-p (function (t) boolean))
|
||||
(capitalize (function ((or integer string)) (or integer string)))
|
||||
(car (function (list) t))
|
||||
(car-less-than-car (function (list list) boolean))
|
||||
|
|
|
|||
|
|
@ -129,7 +129,7 @@ redefine OBJECT if it is a symbol."
|
|||
(setq args (help-function-arglist obj)) ;save arg list
|
||||
(setq obj (cdr obj)) ;throw lambda away
|
||||
(setq obj (cdr obj)))
|
||||
((byte-code-function-p obj)
|
||||
((closurep obj)
|
||||
(setq args (help-function-arglist obj)))
|
||||
(t (error "Compilation failed")))
|
||||
(if (zerop indent) ; not a nested function
|
||||
|
|
@ -178,7 +178,9 @@ redefine OBJECT if it is a symbol."
|
|||
(t
|
||||
(insert "Uncompiled body: ")
|
||||
(let ((print-escape-newlines t))
|
||||
(prin1 (macroexp-progn obj)
|
||||
(prin1 (macroexp-progn (if (interpreted-function-p obj)
|
||||
(aref obj 1)
|
||||
obj))
|
||||
(current-buffer))))))
|
||||
(if interactive-p
|
||||
(message "")))
|
||||
|
|
|
|||
|
|
@ -4254,7 +4254,7 @@ code location is known."
|
|||
((pred edebug--symbol-prefixed-p) nil)
|
||||
(_
|
||||
(when (and skip-next-lambda
|
||||
(not (memq (car-safe fun) '(closure lambda))))
|
||||
(not (interpreted-function-p fun)))
|
||||
(warn "Edebug--strip-instrumentation expected an interpreted function:\n%S" fun))
|
||||
(unless skip-next-lambda
|
||||
(edebug--unwrap-frame new-frame)
|
||||
|
|
|
|||
|
|
@ -1347,7 +1347,6 @@ Lisp function does not specify a special indentation."
|
|||
(put 'condition-case 'lisp-indent-function 2)
|
||||
(put 'handler-case 'lisp-indent-function 1) ;CL
|
||||
(put 'unwind-protect 'lisp-indent-function 1)
|
||||
(put 'closure 'lisp-indent-function 2)
|
||||
|
||||
(defun indent-sexp (&optional endpos)
|
||||
"Indent each line of the list starting just after point.
|
||||
|
|
|
|||
|
|
@ -185,7 +185,7 @@ DOC is a string where \"FUNCTION\" and \"OLDFUN\" are expected.")
|
|||
(defun advice--interactive-form-1 (function)
|
||||
"Like `interactive-form' but preserves the static context if needed."
|
||||
(let ((if (interactive-form function)))
|
||||
(if (or (null if) (not (eq 'closure (car-safe function))))
|
||||
(if (not (and if (interpreted-function-p function)))
|
||||
if
|
||||
(cl-assert (eq 'interactive (car if)))
|
||||
(let ((form (cadr if)))
|
||||
|
|
@ -193,14 +193,14 @@ DOC is a string where \"FUNCTION\" and \"OLDFUN\" are expected.")
|
|||
if
|
||||
;; The interactive is expected to be run in the static context
|
||||
;; that the function captured.
|
||||
(let ((ctx (nth 1 function)))
|
||||
(let ((ctx (aref function 2)))
|
||||
`(interactive
|
||||
,(let* ((f (if (eq 'function (car-safe form)) (cadr form) form)))
|
||||
;; If the form jut returns a function, preserve the fact that
|
||||
;; it just returns a function, which is an info we use in
|
||||
;; `advice--make-interactive-form'.
|
||||
(if (eq 'lambda (car-safe f))
|
||||
`',(eval form ctx)
|
||||
(eval form ctx)
|
||||
`(eval ',form ',ctx))))))))))
|
||||
|
||||
(defun advice--interactive-form (function)
|
||||
|
|
|
|||
|
|
@ -146,7 +146,7 @@
|
|||
(setf (cl--find-class 'oclosure)
|
||||
(oclosure--class-make 'oclosure
|
||||
"The root parent of all OClosure types"
|
||||
nil (list (cl--find-class 'function))
|
||||
nil (list (cl--find-class 'closure))
|
||||
'(oclosure)))
|
||||
(defun oclosure--p (oclosure)
|
||||
(not (not (oclosure-type oclosure))))
|
||||
|
|
@ -431,75 +431,57 @@ ARGS and BODY are the same as for `lambda'."
|
|||
|
||||
(defun oclosure--fix-type (_ignore oclosure)
|
||||
"Helper function to implement `oclosure-lambda' via a macro.
|
||||
This has 2 uses:
|
||||
- For interpreted code, this converts the representation of type information
|
||||
by moving it from the docstring to the environment.
|
||||
- For compiled code, this is used as a marker which cconv uses to check that
|
||||
immutable fields are indeed not mutated."
|
||||
(if (byte-code-function-p oclosure)
|
||||
;; Actually, this should never happen since `cconv.el' should have
|
||||
;; optimized away the call to this function.
|
||||
oclosure
|
||||
;; For byte-coded functions, we store the type as a symbol in the docstring
|
||||
;; slot. For interpreted functions, there's no specific docstring slot
|
||||
;; so `Ffunction' turns the symbol into a string.
|
||||
;; We thus have convert it back into a symbol (via `intern') and then
|
||||
;; stuff it into the environment part of the closure with a special
|
||||
;; marker so we can distinguish this entry from actual variables.
|
||||
(cl-assert (eq 'closure (car-safe oclosure)))
|
||||
(let ((typename (nth 3 oclosure))) ;; The "docstring".
|
||||
(cl-assert (stringp typename))
|
||||
(push (cons :type (intern typename))
|
||||
(cadr oclosure))
|
||||
oclosure)))
|
||||
This is used as a marker which cconv uses to check that
|
||||
immutable fields are indeed not mutated."
|
||||
(cl-assert (closurep oclosure))
|
||||
;; This should happen only for interpreted closures since `cconv.el'
|
||||
;; should have optimized away the call to this function.
|
||||
oclosure)
|
||||
|
||||
(defun oclosure--copy (oclosure mutlist &rest args)
|
||||
(cl-assert (closurep oclosure))
|
||||
(if (byte-code-function-p oclosure)
|
||||
(apply #'make-closure oclosure
|
||||
(if (null mutlist)
|
||||
args
|
||||
(mapcar (lambda (arg) (if (pop mutlist) (list arg) arg)) args)))
|
||||
(cl-assert (eq 'closure (car-safe oclosure))
|
||||
nil "oclosure not closure: %S" oclosure)
|
||||
(cl-assert (eq :type (caar (cadr oclosure))))
|
||||
(let ((env (cadr oclosure)))
|
||||
`(closure
|
||||
(,(car env)
|
||||
,@(named-let loop ((env (cdr env)) (args args))
|
||||
(when args
|
||||
(cons (cons (caar env) (car args))
|
||||
(loop (cdr env) (cdr args)))))
|
||||
,@(nthcdr (1+ (length args)) env))
|
||||
,@(nthcdr 2 oclosure)))))
|
||||
(cl-assert (consp (aref oclosure 1)))
|
||||
(cl-assert (null (aref oclosure 3)))
|
||||
(cl-assert (symbolp (aref oclosure 4)))
|
||||
(let ((env (aref oclosure 2)))
|
||||
(make-interpreted-closure
|
||||
(aref oclosure 0)
|
||||
(aref oclosure 1)
|
||||
(named-let loop ((env env) (args args))
|
||||
(if (null args) env
|
||||
(cons (cons (caar env) (car args))
|
||||
(loop (cdr env) (cdr args)))))
|
||||
(aref oclosure 4)
|
||||
(if (> (length oclosure) 5)
|
||||
`(interactive ,(aref oclosure 5)))))))
|
||||
|
||||
(defun oclosure--get (oclosure index mutable)
|
||||
(if (byte-code-function-p oclosure)
|
||||
(let* ((csts (aref oclosure 2))
|
||||
(v (aref csts index)))
|
||||
(if mutable (car v) v))
|
||||
(cl-assert (eq 'closure (car-safe oclosure)))
|
||||
(cl-assert (eq :type (caar (cadr oclosure))))
|
||||
(cdr (nth (1+ index) (cadr oclosure)))))
|
||||
(cl-assert (closurep oclosure))
|
||||
(let* ((csts (aref oclosure 2)))
|
||||
(if (vectorp csts)
|
||||
(let ((v (aref csts index)))
|
||||
(if mutable (car v) v))
|
||||
(cdr (nth index csts)))))
|
||||
|
||||
(defun oclosure--set (v oclosure index)
|
||||
(if (byte-code-function-p oclosure)
|
||||
(let* ((csts (aref oclosure 2))
|
||||
(cell (aref csts index)))
|
||||
(setcar cell v))
|
||||
(cl-assert (eq 'closure (car-safe oclosure)))
|
||||
(cl-assert (eq :type (caar (cadr oclosure))))
|
||||
(setcdr (nth (1+ index) (cadr oclosure)) v)))
|
||||
(cl-assert (closurep oclosure))
|
||||
(let ((csts (aref oclosure 2)))
|
||||
(if (vectorp csts)
|
||||
(let ((cell (aref csts index)))
|
||||
(setcar cell v))
|
||||
(setcdr (nth index csts) v))))
|
||||
|
||||
(defun oclosure-type (oclosure)
|
||||
"Return the type of OCLOSURE, or nil if the arg is not a OClosure."
|
||||
(if (byte-code-function-p oclosure)
|
||||
(let ((type (and (> (length oclosure) 4) (aref oclosure 4))))
|
||||
(if (symbolp type) type))
|
||||
(and (eq 'closure (car-safe oclosure))
|
||||
(let* ((env (car-safe (cdr oclosure)))
|
||||
(first-var (car-safe env)))
|
||||
(and (eq :type (car-safe first-var))
|
||||
(cdr first-var))))))
|
||||
"Return the type of OCLOSURE, or nil if the arg is not an OClosure."
|
||||
(and (closurep oclosure)
|
||||
(> (length oclosure) 4)
|
||||
(let ((type (aref oclosure 4)))
|
||||
(if (symbolp type) type))))
|
||||
|
||||
(defconst oclosure--accessor-prototype
|
||||
;; Use `oclosure--lambda' to circumvent a bootstrapping problem:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue