ecl/src/c/numbers/sin.d
2016-05-06 08:41:52 +02:00

73 lines
1.6 KiB
C

/* -*- Mode: C; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/* vim: set filetype=c tabstop=2 shiftwidth=2 expandtab: */
/*
* sin.d - trascendental functions: sine
*
* Copyright (c) 1984 Taiichi Yuasa and Masami Hagiya
* Copyright (c) 1990 Giuseppe Attardi
* Copyright (c) 2001 Juan Jose Garcia Ripoll
*
* See file 'LICENSE' for the copyright details.
*
*/
#define ECL_INCLUDE_MATH_H
#include <ecl/ecl.h>
#include <ecl/internal.h>
#include <ecl/impl/math_dispatch.h>
#pragma STDC FENV_ACCESS ON
cl_object
cl_sin(cl_object x)
{
@(return ecl_sin(x));
}
static cl_object
ecl_sin_rational(cl_object x)
{
return ecl_make_single_float(sinf(ecl_to_float(x)));
}
static cl_object
ecl_sin_single_float(cl_object x)
{
return ecl_make_single_float(sinf(ecl_single_float(x)));
}
static cl_object
ecl_sin_double_float(cl_object x)
{
return ecl_make_double_float(sin(ecl_double_float(x)));
}
#ifdef ECL_LONG_FLOAT
static cl_object
ecl_sin_long_float(cl_object x)
{
return ecl_make_long_float(sinl(ecl_long_float(x)));
}
#endif
static cl_object
ecl_sin_complex(cl_object x)
{
/*
z = x + I y
z = x + I y
sin(z) = sinh(I z) = sinh(-y + I x)
*/
cl_object dx = x->complex.real;
cl_object dy = x->complex.imag;
cl_object a = ecl_times(ecl_sin(dx), ecl_cosh(dy));
cl_object b = ecl_times(ecl_cos(dx), ecl_sinh(dy));
return ecl_make_complex(a, b);
}
MATH_DEF_DISPATCH1(sin, @[sin], @[number],
ecl_sin_rational, ecl_sin_rational, ecl_sin_rational,
ecl_sin_single_float, ecl_sin_double_float, ecl_sin_long_float,
ecl_sin_complex);