mirror of
https://gitlab.com/embeddable-common-lisp/ecl.git
synced 2026-01-11 19:53:52 -08:00
520 lines
15 KiB
C
520 lines
15 KiB
C
/*
|
|
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
|
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
|
* Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
|
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
*
|
|
* Permission is hereby granted to use or copy this program
|
|
* for any purpose, provided the above notices are retained on all copies.
|
|
* Permission to modify the code and to distribute modified code is granted,
|
|
* provided the above notices are retained, and a notice that the code was
|
|
* modified is included with the above copyright notice.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include "private/gc_priv.h"
|
|
|
|
extern void * GC_clear_stack(void *); /* in misc.c, behaves like identity */
|
|
void GC_extend_size_map(size_t); /* in misc.c. */
|
|
|
|
/* Allocate reclaim list for kind: */
|
|
/* Return TRUE on success */
|
|
GC_bool GC_alloc_reclaim_list(struct obj_kind *kind)
|
|
{
|
|
struct hblk ** result = (struct hblk **)
|
|
GC_scratch_alloc((MAXOBJGRANULES+1) * sizeof(struct hblk *));
|
|
if (result == 0) return(FALSE);
|
|
BZERO(result, (MAXOBJGRANULES+1)*sizeof(struct hblk *));
|
|
kind -> ok_reclaim_list = result;
|
|
return(TRUE);
|
|
}
|
|
|
|
/* Allocate a large block of size lb bytes. */
|
|
/* The block is not cleared. */
|
|
/* Flags is 0 or IGNORE_OFF_PAGE. */
|
|
/* We hold the allocation lock. */
|
|
/* EXTRA_BYTES were already added to lb. */
|
|
ptr_t GC_alloc_large(size_t lb, int k, unsigned flags)
|
|
{
|
|
struct hblk * h;
|
|
word n_blocks;
|
|
ptr_t result;
|
|
|
|
/* Round up to a multiple of a granule. */
|
|
lb = (lb + GRANULE_BYTES - 1) & ~(GRANULE_BYTES - 1);
|
|
n_blocks = OBJ_SZ_TO_BLOCKS(lb);
|
|
if (!GC_is_initialized) GC_init_inner();
|
|
/* Do our share of marking work */
|
|
if(GC_incremental && !GC_dont_gc)
|
|
GC_collect_a_little_inner((int)n_blocks);
|
|
h = GC_allochblk(lb, k, flags);
|
|
# ifdef USE_MUNMAP
|
|
if (0 == h) {
|
|
GC_merge_unmapped();
|
|
h = GC_allochblk(lb, k, flags);
|
|
}
|
|
# endif
|
|
while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) {
|
|
h = GC_allochblk(lb, k, flags);
|
|
}
|
|
if (h == 0) {
|
|
result = 0;
|
|
} else {
|
|
size_t total_bytes = n_blocks * HBLKSIZE;
|
|
if (n_blocks > 1) {
|
|
GC_large_allocd_bytes += total_bytes;
|
|
if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
|
|
GC_max_large_allocd_bytes = GC_large_allocd_bytes;
|
|
}
|
|
result = h -> hb_body;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Allocate a large block of size lb bytes. Clear if appropriate. */
|
|
/* We hold the allocation lock. */
|
|
/* EXTRA_BYTES were already added to lb. */
|
|
ptr_t GC_alloc_large_and_clear(size_t lb, int k, unsigned flags)
|
|
{
|
|
ptr_t result = GC_alloc_large(lb, k, flags);
|
|
word n_blocks = OBJ_SZ_TO_BLOCKS(lb);
|
|
|
|
if (0 == result) return 0;
|
|
if (GC_debugging_started || GC_obj_kinds[k].ok_init) {
|
|
/* Clear the whole block, in case of GC_realloc call. */
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* allocate lb bytes for an object of kind k. */
|
|
/* Should not be used to directly to allocate */
|
|
/* objects such as STUBBORN objects that */
|
|
/* require special handling on allocation. */
|
|
/* First a version that assumes we already */
|
|
/* hold lock: */
|
|
void * GC_generic_malloc_inner(size_t lb, int k)
|
|
{
|
|
void *op;
|
|
|
|
if(SMALL_OBJ(lb)) {
|
|
struct obj_kind * kind = GC_obj_kinds + k;
|
|
size_t lg = GC_size_map[lb];
|
|
void ** opp = &(kind -> ok_freelist[lg]);
|
|
|
|
if( (op = *opp) == 0 ) {
|
|
if (GC_size_map[lb] == 0) {
|
|
if (!GC_is_initialized) GC_init_inner();
|
|
if (GC_size_map[lb] == 0) GC_extend_size_map(lb);
|
|
return(GC_generic_malloc_inner(lb, k));
|
|
}
|
|
if (kind -> ok_reclaim_list == 0) {
|
|
if (!GC_alloc_reclaim_list(kind)) goto out;
|
|
}
|
|
op = GC_allocobj(lg, k);
|
|
if (op == 0) goto out;
|
|
}
|
|
*opp = obj_link(op);
|
|
obj_link(op) = 0;
|
|
GC_bytes_allocd += GRANULES_TO_BYTES(lg);
|
|
} else {
|
|
op = (ptr_t)GC_alloc_large_and_clear(ADD_SLOP(lb), k, 0);
|
|
GC_bytes_allocd += lb;
|
|
}
|
|
|
|
out:
|
|
return op;
|
|
}
|
|
|
|
/* Allocate a composite object of size n bytes. The caller guarantees */
|
|
/* that pointers past the first page are not relevant. Caller holds */
|
|
/* allocation lock. */
|
|
void * GC_generic_malloc_inner_ignore_off_page(size_t lb, int k)
|
|
{
|
|
word lb_adjusted;
|
|
void * op;
|
|
|
|
if (lb <= HBLKSIZE)
|
|
return(GC_generic_malloc_inner(lb, k));
|
|
lb_adjusted = ADD_SLOP(lb);
|
|
op = GC_alloc_large_and_clear(lb_adjusted, k, IGNORE_OFF_PAGE);
|
|
GC_bytes_allocd += lb_adjusted;
|
|
return op;
|
|
}
|
|
|
|
void * GC_generic_malloc(size_t lb, int k)
|
|
{
|
|
void * result;
|
|
DCL_LOCK_STATE;
|
|
|
|
if (GC_have_errors) GC_print_all_errors();
|
|
GC_INVOKE_FINALIZERS();
|
|
if (SMALL_OBJ(lb)) {
|
|
LOCK();
|
|
result = GC_generic_malloc_inner((word)lb, k);
|
|
UNLOCK();
|
|
} else {
|
|
size_t lw;
|
|
size_t lb_rounded;
|
|
word n_blocks;
|
|
GC_bool init;
|
|
lw = ROUNDED_UP_WORDS(lb);
|
|
lb_rounded = WORDS_TO_BYTES(lw);
|
|
n_blocks = OBJ_SZ_TO_BLOCKS(lb_rounded);
|
|
init = GC_obj_kinds[k].ok_init;
|
|
LOCK();
|
|
result = (ptr_t)GC_alloc_large(lb_rounded, k, 0);
|
|
if (0 != result) {
|
|
if (GC_debugging_started) {
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
} else {
|
|
# ifdef THREADS
|
|
/* Clear any memory that might be used for GC descriptors */
|
|
/* before we release the lock. */
|
|
((word *)result)[0] = 0;
|
|
((word *)result)[1] = 0;
|
|
((word *)result)[lw-1] = 0;
|
|
((word *)result)[lw-2] = 0;
|
|
# endif
|
|
}
|
|
}
|
|
GC_bytes_allocd += lb_rounded;
|
|
UNLOCK();
|
|
if (init && !GC_debugging_started && 0 != result) {
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
}
|
|
}
|
|
if (0 == result) {
|
|
return((*GC_oom_fn)(lb));
|
|
} else {
|
|
return(result);
|
|
}
|
|
}
|
|
|
|
|
|
#define GENERAL_MALLOC(lb,k) \
|
|
GC_clear_stack(GC_generic_malloc(lb, k))
|
|
/* We make the GC_clear_stack_call a tail call, hoping to get more of */
|
|
/* the stack. */
|
|
|
|
/* Allocate lb bytes of atomic (pointerfree) data */
|
|
#ifdef THREAD_LOCAL_ALLOC
|
|
void * GC_core_malloc_atomic(size_t lb)
|
|
#else
|
|
void * GC_malloc_atomic(size_t lb)
|
|
#endif
|
|
{
|
|
void *op;
|
|
void ** opp;
|
|
size_t lg;
|
|
DCL_LOCK_STATE;
|
|
|
|
if(SMALL_OBJ(lb)) {
|
|
lg = GC_size_map[lb];
|
|
opp = &(GC_aobjfreelist[lg]);
|
|
LOCK();
|
|
if( EXPECT((op = *opp) == 0, 0) ) {
|
|
UNLOCK();
|
|
return(GENERAL_MALLOC((word)lb, PTRFREE));
|
|
}
|
|
*opp = obj_link(op);
|
|
GC_bytes_allocd += GRANULES_TO_BYTES(lg);
|
|
UNLOCK();
|
|
return((void *) op);
|
|
} else {
|
|
return(GENERAL_MALLOC((word)lb, PTRFREE));
|
|
}
|
|
}
|
|
|
|
/* provide a version of strdup() that uses the collector to allocate the
|
|
copy of the string */
|
|
# ifdef __STDC__
|
|
char *GC_strdup(const char *s)
|
|
# else
|
|
char *GC_strdup(s)
|
|
char *s;
|
|
#endif
|
|
{
|
|
char *copy;
|
|
|
|
if (s == NULL) return NULL;
|
|
if ((copy = GC_malloc_atomic(strlen(s) + 1)) == NULL) {
|
|
errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
strcpy(copy, s);
|
|
return copy;
|
|
}
|
|
|
|
/* Allocate lb bytes of composite (pointerful) data */
|
|
#ifdef THREAD_LOCAL_ALLOC
|
|
void * GC_core_malloc(size_t lb)
|
|
#else
|
|
void * GC_malloc(size_t lb)
|
|
#endif
|
|
{
|
|
void *op;
|
|
void **opp;
|
|
size_t lg;
|
|
DCL_LOCK_STATE;
|
|
|
|
if(SMALL_OBJ(lb)) {
|
|
lg = GC_size_map[lb];
|
|
opp = (void **)&(GC_objfreelist[lg]);
|
|
LOCK();
|
|
if( EXPECT((op = *opp) == 0, 0) ) {
|
|
UNLOCK();
|
|
return(GENERAL_MALLOC((word)lb, NORMAL));
|
|
}
|
|
/* See above comment on signals. */
|
|
GC_ASSERT(0 == obj_link(op)
|
|
|| (word)obj_link(op)
|
|
<= (word)GC_greatest_plausible_heap_addr
|
|
&& (word)obj_link(op)
|
|
>= (word)GC_least_plausible_heap_addr);
|
|
*opp = obj_link(op);
|
|
obj_link(op) = 0;
|
|
GC_bytes_allocd += GRANULES_TO_BYTES(lg);
|
|
UNLOCK();
|
|
return op;
|
|
} else {
|
|
return(GENERAL_MALLOC(lb, NORMAL));
|
|
}
|
|
}
|
|
|
|
# ifdef REDIRECT_MALLOC
|
|
|
|
/* Avoid unnecessary nested procedure calls here, by #defining some */
|
|
/* malloc replacements. Otherwise we end up saving a */
|
|
/* meaningless return address in the object. It also speeds things up, */
|
|
/* but it is admittedly quite ugly. */
|
|
# ifdef GC_ADD_CALLER
|
|
# define RA GC_RETURN_ADDR,
|
|
# else
|
|
# define RA
|
|
# endif
|
|
# define GC_debug_malloc_replacement(lb) \
|
|
GC_debug_malloc(lb, RA "unknown", 0)
|
|
|
|
void * malloc(size_t lb)
|
|
{
|
|
/* It might help to manually inline the GC_malloc call here. */
|
|
/* But any decent compiler should reduce the extra procedure call */
|
|
/* to at most a jump instruction in this case. */
|
|
# if defined(I386) && defined(GC_SOLARIS_THREADS)
|
|
/*
|
|
* Thread initialisation can call malloc before
|
|
* we're ready for it.
|
|
* It's not clear that this is enough to help matters.
|
|
* The thread implementation may well call malloc at other
|
|
* inopportune times.
|
|
*/
|
|
if (!GC_is_initialized) return sbrk(lb);
|
|
# endif /* I386 && GC_SOLARIS_THREADS */
|
|
return((void *)REDIRECT_MALLOC(lb));
|
|
}
|
|
|
|
#if defined(GC_LINUX_THREADS) /* && !defined(USE_PROC_FOR_LIBRARIES) */
|
|
static ptr_t GC_libpthread_start = 0;
|
|
static ptr_t GC_libpthread_end = 0;
|
|
static ptr_t GC_libld_start = 0;
|
|
static ptr_t GC_libld_end = 0;
|
|
extern GC_bool GC_text_mapping(char *nm, ptr_t *startp, ptr_t *endp);
|
|
/* From os_dep.c */
|
|
|
|
void GC_init_lib_bounds(void)
|
|
{
|
|
if (GC_libpthread_start != 0) return;
|
|
if (!GC_text_mapping("libpthread-",
|
|
&GC_libpthread_start, &GC_libpthread_end)) {
|
|
WARN("Failed to find libpthread.so text mapping: Expect crash\n", 0);
|
|
/* This might still work with some versions of libpthread, */
|
|
/* so we don't abort. Perhaps we should. */
|
|
/* Generate message only once: */
|
|
GC_libpthread_start = (ptr_t)1;
|
|
}
|
|
if (!GC_text_mapping("ld-", &GC_libld_start, &GC_libld_end)) {
|
|
WARN("Failed to find ld.so text mapping: Expect crash\n", 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void * calloc(size_t n, size_t lb)
|
|
{
|
|
# if defined(GC_LINUX_THREADS) /* && !defined(USE_PROC_FOR_LIBRARIES) */
|
|
/* libpthread allocated some memory that is only pointed to by */
|
|
/* mmapped thread stacks. Make sure it's not collectable. */
|
|
{
|
|
static GC_bool lib_bounds_set = FALSE;
|
|
ptr_t caller = (ptr_t)__builtin_return_address(0);
|
|
/* This test does not need to ensure memory visibility, since */
|
|
/* the bounds will be set when/if we create another thread. */
|
|
if (!lib_bounds_set) {
|
|
GC_init_lib_bounds();
|
|
lib_bounds_set = TRUE;
|
|
}
|
|
if (caller >= GC_libpthread_start && caller < GC_libpthread_end
|
|
|| (caller >= GC_libld_start && caller < GC_libld_end))
|
|
return GC_malloc_uncollectable(n*lb);
|
|
/* The two ranges are actually usually adjacent, so there may */
|
|
/* be a way to speed this up. */
|
|
}
|
|
# endif
|
|
return((void *)REDIRECT_MALLOC(n*lb));
|
|
}
|
|
|
|
#ifndef strdup
|
|
# include <string.h>
|
|
char *strdup(const char *s)
|
|
{
|
|
size_t len = strlen(s) + 1;
|
|
char * result = ((char *)REDIRECT_MALLOC(len+1));
|
|
if (result == 0) {
|
|
errno = ENOMEM;
|
|
return 0;
|
|
}
|
|
BCOPY(s, result, len+1);
|
|
return result;
|
|
}
|
|
#endif /* !defined(strdup) */
|
|
/* If strdup is macro defined, we assume that it actually calls malloc, */
|
|
/* and thus the right thing will happen even without overriding it. */
|
|
/* This seems to be true on most Linux systems. */
|
|
|
|
#undef GC_debug_malloc_replacement
|
|
|
|
# endif /* REDIRECT_MALLOC */
|
|
|
|
/* Explicitly deallocate an object p. */
|
|
void GC_free(void * p)
|
|
{
|
|
struct hblk *h;
|
|
hdr *hhdr;
|
|
size_t sz; /* In bytes */
|
|
size_t ngranules; /* sz in granules */
|
|
void **flh;
|
|
int knd;
|
|
struct obj_kind * ok;
|
|
DCL_LOCK_STATE;
|
|
|
|
if (p == 0) return;
|
|
/* Required by ANSI. It's not my fault ... */
|
|
# ifdef LOG_ALLOCS
|
|
GC_err_printf("GC_free(%p): %d\n", p, GC_gc_no);
|
|
# endif
|
|
h = HBLKPTR(p);
|
|
hhdr = HDR(h);
|
|
sz = hhdr -> hb_sz;
|
|
ngranules = BYTES_TO_GRANULES(sz);
|
|
# if defined(REDIRECT_MALLOC) && \
|
|
(defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \
|
|
|| defined(MSWIN32))
|
|
/* For Solaris, we have to redirect malloc calls during */
|
|
/* initialization. For the others, this seems to happen */
|
|
/* implicitly. */
|
|
/* Don't try to deallocate that memory. */
|
|
if (0 == hhdr) return;
|
|
# endif
|
|
GC_ASSERT(GC_base(p) == p);
|
|
knd = hhdr -> hb_obj_kind;
|
|
ok = &GC_obj_kinds[knd];
|
|
if (EXPECT((ngranules <= MAXOBJGRANULES), 1)) {
|
|
LOCK();
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
/* Its unnecessary to clear the mark bit. If the */
|
|
/* object is reallocated, it doesn't matter. O.w. the */
|
|
/* collector will do it, since it's on a free list. */
|
|
if (ok -> ok_init) {
|
|
BZERO((word *)p + 1, sz-sizeof(word));
|
|
}
|
|
flh = &(ok -> ok_freelist[ngranules]);
|
|
obj_link(p) = *flh;
|
|
*flh = (ptr_t)p;
|
|
UNLOCK();
|
|
} else {
|
|
size_t nblocks = OBJ_SZ_TO_BLOCKS(sz);
|
|
LOCK();
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
if (nblocks > 1) {
|
|
GC_large_allocd_bytes -= nblocks * HBLKSIZE;
|
|
}
|
|
GC_freehblk(h);
|
|
UNLOCK();
|
|
}
|
|
}
|
|
|
|
/* Explicitly deallocate an object p when we already hold lock. */
|
|
/* Only used for internally allocated objects, so we can take some */
|
|
/* shortcuts. */
|
|
#ifdef THREADS
|
|
void GC_free_inner(void * p)
|
|
{
|
|
struct hblk *h;
|
|
hdr *hhdr;
|
|
size_t sz; /* bytes */
|
|
size_t ngranules; /* sz in granules */
|
|
void ** flh;
|
|
int knd;
|
|
struct obj_kind * ok;
|
|
DCL_LOCK_STATE;
|
|
|
|
h = HBLKPTR(p);
|
|
hhdr = HDR(h);
|
|
knd = hhdr -> hb_obj_kind;
|
|
sz = hhdr -> hb_sz;
|
|
ngranules = BYTES_TO_GRANULES(sz);
|
|
ok = &GC_obj_kinds[knd];
|
|
if (ngranules <= MAXOBJGRANULES) {
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
if (ok -> ok_init) {
|
|
BZERO((word *)p + 1, sz-sizeof(word));
|
|
}
|
|
flh = &(ok -> ok_freelist[ngranules]);
|
|
obj_link(p) = *flh;
|
|
*flh = (ptr_t)p;
|
|
} else {
|
|
size_t nblocks = OBJ_SZ_TO_BLOCKS(sz);
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
if (nblocks > 1) {
|
|
GC_large_allocd_bytes -= nblocks * HBLKSIZE;
|
|
}
|
|
GC_freehblk(h);
|
|
}
|
|
}
|
|
#endif /* THREADS */
|
|
|
|
# if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)
|
|
# define REDIRECT_FREE GC_free
|
|
# endif
|
|
# ifdef REDIRECT_FREE
|
|
void free(void * p)
|
|
{
|
|
# if defined(GC_LINUX_THREADS) && !defined(USE_PROC_FOR_LIBRARIES)
|
|
{
|
|
/* Don't bother with initialization checks. If nothing */
|
|
/* has been initialized, the check fails, and that's safe, */
|
|
/* since we haven't allocated uncollectable objects either. */
|
|
ptr_t caller = (ptr_t)__builtin_return_address(0);
|
|
/* This test does not need to ensure memory visibility, since */
|
|
/* the bounds will be set when/if we create another thread. */
|
|
if (caller >= GC_libpthread_start && caller < GC_libpthread_end
|
|
|| (caller >= GC_libld_start && caller < GC_libld_end)) {
|
|
GC_free(p);
|
|
return;
|
|
}
|
|
}
|
|
# endif
|
|
# ifndef IGNORE_FREE
|
|
REDIRECT_FREE(p);
|
|
# endif
|
|
}
|
|
# endif /* REDIRECT_MALLOC */
|