@node cl-simd @section cl-simd @cindex SSE2 Intrinsics @cindex Intrinsics, SSE2 The @code{cl-simd} module provides access to SSE2 instructions (which are nowadays supported by any CPU compatible with x86-64) in the form of @emph{intrinsic functions}, similar to the way adopted by modern C compilers. It also provides some lisp-specific functionality, like setf-able intrinsics for accessing lisp arrays. When this module is loaded, it defines an @code{:sse2} feature, which can be subsequently used for conditional compilation of code that depends on it. Intrinsic functions are available from the @code{sse} package. This API, with minor technical differences, is supported by both ECL and SBCL (x86-64 only). @menu * SSE pack types:: * SSE array type:: * Differences from C intrinsics:: * Comparisons and NaN handling:: * Simple extensions:: * Lisp array accessors:: * Example:: @end menu @node SSE pack types @subsection SSE pack types The package defines and/or exports the following types to represent 128-bit SSE register contents: @anchor{Type sse:sse-pack} @deftp {Type} @somepkg{sse-pack,sse} @&optional item-type The generic SSE pack type. @end deftp @anchor{Type sse:int-sse-pack} @deftp {Type} @somepkg{int-sse-pack,sse} Same as @code{(sse-pack integer)}. @end deftp @anchor{Type sse:float-sse-pack} @deftp {Type} @somepkg{float-sse-pack,sse} Same as @code{(sse-pack single-float)}. @end deftp @anchor{Type sse:double-sse-pack} @deftp {Type} @somepkg{double-sse-pack,sse} Same as @code{(sse-pack double-float)}. @end deftp Declaring variable types using the subtype appropriate for your data is likely to lead to more efficient code (especially on ECL). However, the compiler implicitly casts between any subtypes of sse-pack when needed. Printed representation of SSE packs can be controlled by binding @code{*sse-pack-print-mode*}: @anchor{Variable sse:*sse-pack-print-mode*} @defvr {Variable} @somepkg{@earmuffs{sse-pack-print-mode},sse} When set to one of @code{:int}, @code{:float} or @code{:double}, specifies the way SSE packs are printed. A @code{NIL} value (default) instructs the implementation to make its best effort to guess from the data and context. @end defvr @node SSE array type @subsection SSE array type @anchor{Type sse:sse-array} @deftp {Type} @somepkg{sse-array,sse} element-type @&optional dimensions Expands to a lisp array type that is efficiently supported by AREF-like accessors. It should be assumed to be a subtype of @code{SIMPLE-ARRAY}. The type expander signals warnings or errors if it detects that the element-type argument value is inappropriate or unsafe. @end deftp @anchor{Function sse:make-sse-array} @deffn {Function} @somepkg{make-sse-array,sse} dimensions @&key element-type initial-element displaced-to displaced-index-offset Creates an object of type @code{sse-array}, or signals an error. In non-displaced case ensures alignment of the beginning of data to the 16-byte boundary. Unlike @code{make-array}, the element type defaults to (unsigned-byte 8). @end deffn On ECL this function supports full-featured displacement. On SBCL it has to simulate it by sharing the underlying data vector, and does not support nonzero index offset. @node Differences from C intrinsics @subsection Differences from C intrinsics Intel Compiler, GCC and @url{http://msdn.microsoft.com/en-us/library/y0dh78ez%28VS.80%29.aspx,MSVC} all support the same set of SSE intrinsics, originally designed by Intel. This package generally follows the naming scheme of the C version, with the following exceptions: @itemize @item Underscores are replaced with dashes, and the @code{_mm_} prefix is removed in favor of packages. @item The 'e' from @code{epi} is dropped because MMX is obsolete and won't be supported. @item @code{_si128} functions are renamed to @code{-pi} for uniformity and brevity. The author has personally found this discrepancy in the original C intrinsics naming highly jarring. @item Comparisons are named using graphic characters, e.g. @code{<=-ps} for @code{cmpleps}, or @code{/>-ps} for @code{cmpngtps}. In some places the set of comparison functions is extended to cover the full possible range. @item Scalar comparison predicates are named like @code{..-ss?} for @code{comiss}, and @code{..-ssu?} for @code{ucomiss} wrappers. @item Conversion functions are renamed to @code{convert-*-to-*} and @code{truncate-*-to-*}. @item A few functions are completely renamed: @code{cpu-mxcsr} (setf-able), @code{cpu-pause}, @code{cpu-load-fence}, @code{cpu-store-fence}, @code{cpu-memory-fence}, @code{cpu-clflush}, @code{cpu-prefetch-*}. @end itemize In addition, foreign pointer access intrinsics have an additional optional integer offset parameter to allow more efficient coding of pointer deference, and the most common ones have been renamed and made SETF-able: @itemize @item @code{mem-ref-ss}, @code{mem-ref-ps}, @code{mem-ref-aps} @item @code{mem-ref-sd}, @code{mem-ref-pd}, @code{mem-ref-apd} @item @code{mem-ref-pi}, @code{mem-ref-api}, @code{mem-ref-si64} @end itemize (The @code{-ap*} version requires alignment.) @node Comparisons and NaN handling @subsection Comparisons and NaN handling Floating-point arithmetic intrinsics have trivial IEEE semantics when given QNaN and SNaN arguments. Comparisons have more complex behavior, detailed in the following table: @multitable { @code{/>=-ss, />=-ps} } { @code{/>=-sd, />=-pd} } { Not greater or equal } { Result for NaN } { QNaN traps } @item Single-float @tab Double-float @tab Condition @tab Result for NaN @tab QNaN traps @item @code{=-ss}, @code{=-ps} @tab @code{=-sd}, @code{=-pd} @tab Equal @tab False @tab No @item @code{<-ss}, @code{<-ps} @tab @code{<-sd}, @code{<-pd} @tab Less @tab False @tab Yes @item @code{<=-ss}, @code{<=-ps} @tab @code{<=-sd}, @code{<=-pd} @tab Less or equal @tab False @tab Yes @item @code{>-ss}, @code{>-ps} @tab @code{>-sd}, @code{>-pd} @tab Greater @tab False @tab Yes @item @code{>=-ss}, @code{>=-ps} @tab @code{>=-sd}, @code{>=-pd} @tab Greater or equal @tab False @tab Yes @item @code{/=-ss}, @code{/=-ps} @tab @code{/=-sd}, @code{/=-pd} @tab Not equal @tab True @tab No @item @code{/<-ss}, @code{/<-ps} @tab @code{/<-sd}, @code{/<-pd} @tab Not less @tab True @tab Yes @item @code{/<=-ss}, @code{/<=-ps} @tab @code{/<=-sd}, @code{/<=-pd} @tab Not less or equal @tab True @tab Yes @item @code{/>-ss}, @code{/>-ps} @tab @code{/>-sd}, @code{/>-pd} @tab Not greater @tab True @tab Yes @item @code{/>=-ss}, @code{/>=-ps} @tab @code{/>=-sd}, @code{/>=-pd} @tab Not greater or equal @tab True @tab Yes @item @code{cmpord-ss}, @code{cmpord-ps} @tab @code{cmpord-sd}, @code{cmpord-pd} @tab Ordered, i.e. no NaN args @tab False @tab No @item @code{cmpunord-ss}, @code{cmpunord-ps} @tab @code{cmpunord-sd}, @code{cmpunord-pd} @tab Unordered, i.e. with NaN args @tab True @tab No @end multitable Likewise for scalar comparison predicates, i.e. functions that return the result of the comparison as a Lisp boolean instead of a bitmask sse-pack: @multitable { Single-float } { Double-float } { Not greater or equal } { Result for NaN } { QNaN traps } @item Single-float @tab Double-float @tab Condition @tab Result for NaN @tab QNaN traps @item @code{=-ss?} @tab @code{=-sd?} @tab Equal @tab True @tab Yes @item @code{=-ssu?} @tab @code{=-sdu?} @tab Equal @tab True @tab No @item @code{<-ss?} @tab @code{<-sd?} @tab Less @tab True @tab Yes @item @code{<-ssu?} @tab @code{<-sdu?} @tab Less @tab True @tab No @item @code{<=-ss?} @tab @code{<=-sd?} @tab Less or equal @tab True @tab Yes @item @code{<=-ssu?} @tab @code{<=-sdu?} @tab Less or equal @tab True @tab No @item @code{>-ss?} @tab @code{>-sd?} @tab Greater @tab False @tab Yes @item @code{>-ssu?} @tab @code{>-sdu?} @tab Greater @tab False @tab No @item @code{>=-ss?} @tab @code{>=-sd?} @tab Greater or equal @tab False @tab Yes @item @code{>=-ssu?} @tab @code{>=-sdu?} @tab Greater or equal @tab False @tab No @item @code{/=-ss?} @tab @code{/=-sd?} @tab Not equal @tab False @tab Yes @item @code{/=-ssu?} @tab @code{/=-sdu?} @tab Not equal @tab False @tab No @end multitable Note that MSDN specifies different return values for the C counterparts of some of these functions when called with NaN arguments, but that seems to disagree with the actually generated code. @node Simple extensions @subsection Simple extensions This module extends the set of basic intrinsics with the following simple compound functions: @itemize @item @code{neg-ss}, @code{neg-ps}, @code{neg-sd}, @code{neg-pd}, @code{neg-pi8}, @code{neg-pi16}, @code{neg-pi32}, @code{neg-pi64}: implement numeric negation of the corresponding data type. @item @code{not-ps}, @code{not-pd}, @code{not-pi}: implement bitwise logical inversion. @item @code{if-ps}, @code{if-pd}, @code{if-pi}: perform element-wise combining of two values based on a boolean condition vector produced as a combination of comparison function results through bitwise logical functions. The condition value must use all-zero bitmask for false, and all-one bitmask for true as a value for each logical vector element. The result is undefined if any other bit pattern is used. N.B.: these are @emph{functions}, so both branches of the conditional are always evaluated. @end itemize The module also provides symbol macros that expand into expressions producing certain constants in the most efficient way: @itemize @item 0.0-ps 0.0-pd 0-pi for zero @item true-ps true-pd true-pi for all 1 bitmask @item false-ps false-pd false-pi for all 0 bitmask (same as zero) @end itemize @node Lisp array accessors @subsection Lisp array accessors In order to provide better integration with ordinary lisp code, this module implements a set of AREF-like memory accessors: @itemize @item @code{(ROW-MAJOR-)?AREF-PREFETCH-(T0|T1|T2|NTA)} for cache prefetch. @item @code{(ROW-MAJOR-)?AREF-CLFLUSH} for cache flush. @item @code{(ROW-MAJOR-)?AREF-[AS]?P[SDI]} for whole-pack read & write. @item @code{(ROW-MAJOR-)?AREF-S(S|D|I64)} for scalar read & write. @end itemize (Where A = aligned; S = aligned streamed write.) These accessors can be used with any non-bit specialized array or vector, without restriction on the precise element type (although it should be declared at compile time to ensure generation of the fastest code). Additional index bound checking is done to ensure that enough bytes of memory are accessible after the specified index. As an exception, ROW-MAJOR-AREF-PREFETCH-* does not do any range checks at all, because the prefetch instructions are officially safe to use with bad addresses. The AREF-PREFETCH-* and *-CLFLUSH functions do only ordinary index checks without the usual 16-byte extension. @node Example @subsection Example This code processes several single-float arrays, storing either the value of a*b, or c/3.5 into result, depending on the sign of mode: @example (loop for i from 0 below 128 by 4 do (setf (aref-ps result i) (if-ps (<-ps (aref-ps mode i) 0.0-ps) (mul-ps (aref-ps a i) (aref-ps b i)) (div-ps (aref-ps c i) (set1-ps 3.5))))) @end example As already noted above, both branches of the if are always evaluated.