/* compiler.c -- Bytecode compiler */ /* Copyright (c) 2001, Juan Jose Garcia Ripoll. ECL is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See file '../Copyright' for full details. */ /* Remarks: [1] The virtual machine has a word size of 16 bits. Operands and arguments have this very size, so that for instance, a jump OP_JMP increment takes two words of memory: one for the operator and one for the argument. The interpreter is written with this assumption in mind, but it should be easily modifed, because arguments are retrieved with "next_arg" and operators with "next_op". Parts which will require a careful modification are marked with flag [1]. */ #include #include "ecl.h" #include "ecl-inl.h" #include "internal.h" #include "bytecodes.h" /********************* EXPORTS *********************/ #define REGISTER_SPECIALS 1 #define IGNORE_DECLARATIONS 0 /* Flags for the compilation routines: */ /* + Push the output of this form */ #define FLAG_PUSH 1 /* + Set the output of this form in VALUES */ #define FLAG_VALUES 2 /* + Set the output of this form in REG0 */ #define FLAG_REG0 4 /* + Search function binding in the global environment */ #define FLAG_GLOBAL 8 /* + Ignore this form */ #define FLAG_IGNORE 0 #define FLAG_USEFUL (FLAG_PUSH | FLAG_VALUES | FLAG_REG0) #define ENV cl_env.c_env /********************* PRIVATE ********************/ #define asm_begin() cl_stack_index() #define asm_clear(h) cl_stack_set_index(h) #define current_pc() cl_stack_index() #define set_pc(n) cl_stack_set_index(n) #define asm_op(o) cl_stack_push((cl_object)((cl_fixnum)(o))) #define asm_ref(n) (cl_fixnum)(cl_env.stack[n]) static void asm_op2(int op, int arg); static cl_object asm_end(cl_index handle); static cl_index asm_jmp(register int op); static void asm_complete(register int op, register cl_index original); static cl_fixnum c_var_ref(cl_object var, int allow_symbol_macro); static int c_block(cl_object args, int flags); static int c_case(cl_object args, int flags); static int c_catch(cl_object args, int flags); static int c_compiler_let(cl_object args, int flags); static int c_cond(cl_object args, int flags); static int c_eval_when(cl_object args, int flags); static int c_flet(cl_object args, int flags); static int c_funcall(cl_object args, int flags); static int c_function(cl_object args, int flags); static int c_go(cl_object args, int flags); static int c_if(cl_object args, int flags); static int c_labels(cl_object args, int flags); static int c_let(cl_object args, int flags); static int c_leta(cl_object args, int flags); static int c_locally(cl_object args, int flags); static int c_macrolet(cl_object args, int flags); static int c_multiple_value_bind(cl_object args, int flags); static int c_multiple_value_call(cl_object args, int flags); static int c_multiple_value_prog1(cl_object args, int flags); static int c_multiple_value_setq(cl_object args, int flags); static int c_not(cl_object args, int flags); static int c_nth_value(cl_object args, int flags); static int c_prog1(cl_object args, int flags); static int c_progv(cl_object args, int flags); static int c_psetq(cl_object args, int flags); static int c_values(cl_object args, int flags); static int c_setq(cl_object args, int flags); static int c_return(cl_object args, int flags); static int c_return_from(cl_object args, int flags); static int c_symbol_macrolet(cl_object args, int flags); static int c_tagbody(cl_object args, int flags); static int c_throw(cl_object args, int flags); static int c_unwind_protect(cl_object args, int flags); static int c_while(cl_object args, int flags); static int c_until(cl_object args, int flags); static int compile_body(cl_object args, int flags); static int compile_form(cl_object args, int push); static void FEillegal_variable_name(cl_object) /*__attribute__((noreturn))*/; static void FEill_formed_input(void) /*__attribute__((noreturn))*/; /* -------------------- SAFE LIST HANDLING -------------------- */ static cl_object pop(cl_object *l) { cl_object head, list = *l; if (ATOM(list)) FEill_formed_input(); head = CAR(list); *l = CDR(list); return head; } static cl_object pop_maybe_nil(cl_object *l) { cl_object head, list = *l; if (list == Cnil) return Cnil; if (ATOM(list)) FEill_formed_input(); head = CAR(list); *l = CDR(list); return head; } /* ------------------------------ ASSEMBLER ------------------------------ */ static cl_object asm_end(cl_index beginning) { cl_object bytecodes; cl_index code_size, data_size, i; cl_opcode *code; /* Save bytecodes from this session in a new vector */ code_size = current_pc() - beginning; data_size = length(ENV->constants); bytecodes = cl_alloc_object(t_bytecodes); bytecodes->bytecodes.code_size = code_size; bytecodes->bytecodes.data_size = data_size; bytecodes->bytecodes.code = cl_alloc_atomic(code_size * sizeof(cl_opcode)); bytecodes->bytecodes.data = (cl_object*)cl_alloc(data_size * sizeof(cl_object)); bytecodes->bytecodes.lex = Cnil; for (i = 0, code = (cl_opcode *)bytecodes->bytecodes.code; i < code_size; i++) { code[i] = (cl_fixnum)cl_env.stack[beginning+i]; } for (i=0; i < data_size; i++) { bytecodes->bytecodes.data[i] = CAR(ENV->constants); ENV->constants = CDR(ENV->constants); } asm_clear(beginning); return bytecodes; } #if defined(ECL_SMALL_BYTECODES) static void asm_arg(int n) { #ifdef WORDS_BIGENDIAN asm_op((n >> 8)); asm_op(n & 0xFF); #else asm_op(n & 0xFF); asm_op((n >> 8)); #endif } #else #define asm_arg(n) asm_op(n) #endif static void asm_op2(register int code, register int n) { if (n < -MAX_OPARG || MAX_OPARG < n) FEprogram_error("Argument to bytecode is too large", 0); asm_op(code); asm_arg(n); } static void asm_constant(cl_object c) { ENV->constants = nconc(ENV->constants, CONS(c, Cnil)); } static cl_index asm_jmp(register int op) { cl_index output; asm_op(op); output = current_pc(); asm_arg(0); return output; } static void asm_complete(register int op, register cl_index pc) { cl_fixnum delta = current_pc() - pc; /* [1] */ if (op && (asm_ref(pc-1) != op)) FEprogram_error("Non matching codes in ASM-COMPLETE2", 0); else if (delta < -MAX_OPARG || delta > MAX_OPARG) FEprogram_error("Too large jump", 0); else { #ifdef ECL_SMALL_BYTECODES char low = delta & 0xFF; char high = delta >> 8; cl_env.stack[pc] = (cl_object)(cl_fixnum)low; cl_env.stack[pc+1] = (cl_object)(cl_fixnum)high; #else cl_env.stack[pc] = (cl_object)(cl_fixnum)delta; #endif } } /* ------------------------------ COMPILER ------------------------------ */ typedef struct { void *symbol; int (*compiler)(cl_object, int); int lexical_increment; } compiler_record; static compiler_record database[] = { {@'block', c_block, 1}, {@'case', c_case, 1}, {@'catch', c_catch, 1}, {@'ext::compiler-let', c_compiler_let, 0}, {@'cond', c_cond, 1}, {@'eval-when', c_eval_when, 0}, {@'flet', c_flet, 1}, {@'function', c_function, 1}, {@'funcall', c_funcall, 0}, {@'go', c_go, 1}, {@'if', c_if, 1}, {@'labels', c_labels, 1}, {@'let', c_let, 1}, {@'let*', c_leta, 1}, {@'locally', c_locally, 0}, {@'macrolet', c_macrolet, 0}, {@'multiple-value-bind', c_multiple_value_bind, 1}, {@'multiple-value-call', c_multiple_value_call, 1}, {@'multiple-value-prog1', c_multiple_value_prog1, 1}, {@'multiple-value-setq', c_multiple_value_setq, 1}, {@'not', c_not, 1}, {@'nth-value', c_nth_value, 1}, {@'null', c_not, 1}, {@'progn', compile_body, 0}, {@'prog1', c_prog1, 1}, {@'progv', c_progv, 1}, {@'psetq', c_psetq, 1}, {@'return', c_return, 1}, {@'return-from', c_return_from, 1}, {@'setq', c_setq, 1}, {@'symbol-macrolet', c_symbol_macrolet, 0}, {@'tagbody', c_tagbody, 1}, {@'throw', c_throw, 1}, {@'unwind-protect', c_unwind_protect, 1}, {@'values', c_values, 1}, {@'si::while', c_while, 0}, {@'si::until', c_until, 0}, {NULL, NULL, 1} }; /* ----------------- LEXICAL ENVIRONMENT HANDLING -------------------- */ static void FEillegal_variable_name(cl_object v) { FEprogram_error("Not a valid variable name ~S.", 1, v); } static void FEill_formed_input() { FEprogram_error("Improper list handled to the compiler.", 0); } static int c_register_constant(cl_object c) { cl_object p = ENV->constants; int n; for (n = 0; !Null(p); n++, p=CDR(p)) { if (ENV->coalesce && eql(CAR(p), c)) { return n; } } asm_constant(c); return n; } static void asm_c(register cl_object o) { asm_arg(c_register_constant(o)); } static void asm_op2c(register int code, register cl_object o) { asm_op2(code, c_register_constant(o)); } static void c_register_block(cl_object name) { ENV->variables = CONS(cl_list(2, @':block', name), ENV->variables); } static void c_register_tags(cl_object all_tags) { ENV->variables = CONS(cl_list(2, @':tag', all_tags), ENV->variables); } static void c_register_function(cl_object name) { ENV->variables = CONS(cl_list(2, @':function', name), ENV->variables); ENV->macros = CONS(cl_list(2, name, @'function'), ENV->macros); } static cl_object c_macro_expand1(cl_object stmt) { return macro_expand1(stmt, CONS(ENV->variables, ENV->macros)); } static void c_register_symbol_macro(cl_object name, cl_object exp_fun) { ENV->variables = CONS(cl_list(3, name, @'si::symbol-macro', exp_fun), ENV->variables); } static void c_register_macro(cl_object name, cl_object exp_fun) { ENV->macros = CONS(cl_list(3, name, @'si::macro', exp_fun), ENV->macros); } static void c_register_var(register cl_object var, bool special, bool bound) { /* If this is just a declaration, ensure that the variable was not * declared before as special, to save memory. */ if (bound || (c_var_ref(var, 0) >= 0)) { ENV->variables = CONS(cl_list(3, var, special? @'special' : Cnil, bound? Ct : Cnil), ENV->variables); } } static void c_new_env(struct cl_compiler_env *new_c_env, cl_object env) { ENV = new_c_env; ENV->stepping = 0; ENV->coalesce = TRUE; ENV->constants = Cnil; ENV->variables = Cnil; ENV->macros = Cnil; if (Null(env)) { ENV->lexical_level = 0; return; } ENV->lexical_level = 1; for (env = @revappend(env, Cnil); !Null(env); env = CDR(env)) { cl_object record = CAR(env); cl_object record0 = CAR(record); cl_object record1 = CDR(record); if (SYMBOLP(record0)) { c_register_var(record0, FALSE, TRUE); } else if (!FIXNUMP(record0)) { c_register_function(record1); } else if (record1 == MAKE_FIXNUM(0)) { c_register_tags(Cnil); } else { c_register_block(record1); } } } static cl_object c_tag_ref(cl_object the_tag, cl_object the_type) { cl_fixnum n = 0; cl_object l; for (l = ENV->variables; CONSP(l); l = CDR(l)) { cl_object record = CAR(l); cl_object type = CAR(record); cl_object name = CADR(record); if (type == @':tag') { if (type == the_type && !Null(assql(the_tag, name))) return CONS(MAKE_FIXNUM(n), CDR(assql(the_tag, name))); n++; } else if (type == @':block' || type == @':function') { /* We compare with EQUAL, because of (SETF fname) */ if (type == the_type && equal(name, the_tag)) return MAKE_FIXNUM(n); n++; } else if (Null(name)) { n++; } else { /* We are counting only locals and ignore specials */ } } return Cnil; } static cl_fixnum c_var_ref(cl_object var, int allow_symbol_macro) { cl_fixnum n = 0; cl_object l; for (l = ENV->variables; CONSP(l); l = CDR(l)) { cl_object record = CAR(l); cl_object name = CAR(record); cl_object special = CADR(record); if (name == @':block' || name == @':tag' || name == @':function') n++; else if (name != var) { /* Symbol not yet found. Only count locals. */ if (Null(special)) n++; } else if (special == @'si::symbol-macro') { /* We can only get here when we try to redefine a symbol macro */ if (allow_symbol_macro) return -1; FEprogram_error("Internal error: symbol macro ~S used as variable", 1, var); } else { return Null(special)? n : -2; } } return -1; } static bool c_declared_special(register cl_object var, register cl_object specials) { return ((var->symbol.stype == stp_special) || member_eq(var, specials)); } static void c_declare_specials(cl_object specials) { while (!Null(specials)) { cl_object var = pop(&specials); if (c_var_ref(var,0) >= 0) c_register_var(var, TRUE, FALSE); } } static cl_object c_process_declarations(cl_object body) { @si::process-declarations(1, body); body = VALUES(1); return body; } static bool c_pbind(cl_object var, cl_object specials) { bool special; if (!SYMBOLP(var)) FEillegal_variable_name(var); else if ((special = c_declared_special(var, specials))) { c_register_var(var, TRUE, TRUE); asm_op2c(OP_PBINDS, var); } else { c_register_var(var, FALSE, TRUE); asm_op2c(OP_PBIND, var); } return special; } static bool c_bind(cl_object var, cl_object specials) { bool special; if (!SYMBOLP(var)) FEillegal_variable_name(var); else if ((special = c_declared_special(var, specials))) { c_register_var(var, TRUE, TRUE); asm_op2c(OP_BINDS, var); } else { c_register_var(var, FALSE, TRUE); asm_op2c(OP_BIND, var); } return special; } static void c_undo_bindings(cl_object old_env) { cl_object env; cl_index num_lexical = 0; cl_index num_special = 0; for (env = ENV->variables; env != old_env && !Null(env); env = CDR(env)) { cl_object record = CAR(env); cl_object name = CAR(record); cl_object special = CADR(record); if (name == @':block' || name == @':tag') { FEerror("Internal error: cannot undo BLOCK/TAGBODY.",0); } else if (name == @':function' || Null(special)) { num_lexical++; } else if (special != @'si::symbol-macro') { /* If (third special) = NIL, the variable was declared special, but there is no binding! */ if (!Null(CADDR(record))) { num_special++; } } } if (num_lexical) asm_op2(OP_UNBIND, num_lexical); if (num_special) asm_op2(OP_UNBINDS, num_special); ENV->variables = old_env; } static void compile_setq(int op, cl_object var) { cl_fixnum ndx; if (!SYMBOLP(var)) FEillegal_variable_name(var); ndx = c_var_ref(var,0); if (ndx < 0) { /* Not a lexical variable */ if (var->symbol.stype == stp_constant) FEassignment_to_constant(var); ndx = c_register_constant(var); op = (op == OP_SETQ)? OP_SETQS : OP_PSETQS; } asm_op2(op, ndx); } /* * This routine is used to change the compilation flags in optimizers * that do not want to push values onto the stack. Its purpose is to * keep ignorable forms ignored, while preserving the value of useful * forms. Qualitative behavior: * FLAG_PUSH -> FLAG_VALUES * FLAG_VALUES -> FLAG_VALUES * FLAG_REG0 -> FLAG_REG0 * FLAG_IGNORE -> FLAG_IGNORE */ static int maybe_values_or_reg0(int flags) { if (flags & FLAG_PUSH) return (flags | FLAG_VALUES) & ~FLAG_PUSH; else return flags; } /* * This routine is used to change the compilation flags in optimizers * that do not want to push values onto the stack, but also do not want * to use REG0 (maybe because the call a nested interpret()). Ignorable * forms are kept ignored: * FLAG_PUSH -> FLAG_VALUES * FLAG_VALUES -> FLAG_VALUES * FLAG_REG0 -> FLAG_VALUES * FLAG_IGNORE -> FLAG_IGNORE */ static int maybe_values(int flags) { if (flags & FLAG_USEFUL) return (flags & ~(FLAG_PUSH | FLAG_REG0)) | FLAG_VALUES; else return flags; } /* * This routine is used to change the compilation flags in optimizers * that do not want to push values onto the stack. Its purpose is to * keep ignorable forms ignored, while preserving the value of useful * forms. Qualitative behavior: * FLAG_PUSH -> FLAG_REG0 * FLAG_VALUES -> FLAG_REG0 * FLAG_REG0 -> FLAG_REG0 * FLAG_IGNORE -> FLAG_IGNORE */ static int maybe_reg0(int flags) { if (flags & FLAG_USEFUL) return (flags & ~(FLAG_VALUES | FLAG_PUSH)) | FLAG_REG0; else return flags; } /* -------------------- THE COMPILER -------------------- */ /* The OP_BLOCK operator encloses several forms within a block named BLOCK_NAME, thus catching any OP_RETFROM whose argument matches BLOCK_NAME. The end of this block is marked both by the OP_EXIT operator and the LABELZ which is packed within the OP_BLOCK operator. [OP_BLOCK + name + labelz] .... OP_EXIT_FRAME labelz: ... */ static int c_block(cl_object body, int flags) { cl_object name = pop(&body); cl_object old_env = ENV->variables; cl_index labelz; if (!SYMBOLP(name)) FEprogram_error("BLOCK: Not a valid block name, ~S", 1, name); flags = maybe_values_or_reg0(flags); c_register_block(name); if (Null(name)) labelz = asm_jmp(OP_DO); else { asm_op(OP_BLOCK); asm_c(name); labelz = current_pc(); asm_arg(0); } compile_body(body, flags); asm_op(OP_EXIT_FRAME); asm_complete(Null(name)? OP_DO : 0, labelz); ENV->variables = old_env; return flags; } /* There are several ways to invoke functions and to handle the output arguments. These are [OP_CALL + nargs] function_name [OP_PCALL + nargs] function_name [OP_FCALL + nargs] [OP_PFCALL + nargs] OP_CALL and OP_FCALL leave all arguments in the VALUES() array, while OP_PCALL and OP_PFCALL leave the first argument in the stack. OP_CALL and OP_PCALL use the value in VALUES(0) to retrieve the function, while OP_FCALL and OP_PFCALL use a value from the stack. */ static int c_arguments(cl_object args) { cl_index nargs; for (nargs = 0; !endp(args); nargs++) { compile_form(pop(&args), FLAG_PUSH); } return nargs; } static int asm_function(cl_object args, int flags); static int c_call(cl_object args, int flags) { cl_object name; cl_index nargs; bool push = flags & FLAG_PUSH; name = pop(&args); nargs = c_arguments(args); if (ENV->stepping) { /* When stepping, we only have one opcode to do function * calls: OP_STEPFCALL. */ asm_function(name, (flags & FLAG_GLOBAL) | FLAG_REG0); asm_op2(OP_STEPCALL, nargs); flags = FLAG_REG0; } else if (SYMBOLP(name) && ((flags & FLAG_GLOBAL) || Null(c_tag_ref(name, @':function')))) { asm_op2(push? OP_PCALLG : OP_CALLG, nargs); asm_c(name); } else { /* Fixme!! We can optimize the case of global functions! */ asm_function(name, (flags & FLAG_GLOBAL) | FLAG_REG0); asm_op2(push? OP_PCALL : OP_CALL, nargs); } return flags; } static int c_funcall(cl_object args, int flags) { cl_object name; cl_index nargs; name = pop(&args); if (CONSP(name)) { if (CAR(name) == @'function') { if (cl_list_length(name) != MAKE_FIXNUM(2)) FEprogram_error("FUNCALL: Invalid function name ~S", 1, name); return c_call(CONS(CADR(name), args), flags); } if (CAR(name) == @'quote') { if (cl_list_length(name) != MAKE_FIXNUM(2)) FEprogram_error("FUNCALL: Invalid function name ~S", 1, name); return c_call(CONS(CADR(name), args), flags | FLAG_GLOBAL); } } compile_form(name, FLAG_PUSH); nargs = c_arguments(args); if (ENV->stepping) { asm_op2(OP_STEPCALL, nargs); flags = FLAG_REG0; } else { asm_op2((flags & FLAG_PUSH)? OP_PFCALL : OP_FCALL, nargs); } return flags; } static int perform_c_case(cl_object args, int flags) { cl_object test, clause; do { if (Null(args)) return compile_body(Cnil, flags); clause = pop(&args); if (ATOM(clause)) FEprogram_error("CASE: Illegal clause ~S.",1,clause); test = pop(&clause); } while (test == Cnil); if (@'otherwise' == test || test == Ct) { compile_body(clause, flags); } else { cl_index labeln, labelz; if (CONSP(test)) { cl_index n = length(test); while (n-- > 1) { cl_object v = pop(&test); asm_op(OP_JEQL); asm_c(v); asm_arg(n * (OPCODE_SIZE + OPARG_SIZE * 2) + OPARG_SIZE); } test = CAR(test); } asm_op(OP_JNEQL); asm_c(test); labeln = current_pc(); asm_arg(0); compile_body(clause, flags); if (endp(args) && !(flags & FLAG_USEFUL)) { /* Ther is no otherwise. The test has failed and we need no output value. We simply close jumps. */ asm_complete(0 & OP_JNEQL, labeln); } else { labelz = asm_jmp(OP_JMP); asm_complete(0 & OP_JNEQL, labeln); perform_c_case(args, flags); asm_complete(OP_JMP, labelz); } } return flags; } static int c_case(cl_object clause, int flags) { compile_form(pop(&clause), FLAG_REG0); return perform_c_case(clause, maybe_values_or_reg0(flags)); } /* The OP_CATCH takes the object in VALUES(0) and uses it to catch any OP_THROW operation which uses that value as argument. If a catch occurs, or when all forms have been properly executed, it jumps to LABELZ. LABELZ is packed within the OP_CATCH operator. [OP_CATCH + labelz] ... "forms to be caught" ... OP_EXIT_FRAME labelz: ... */ static int c_catch(cl_object args, int flags) { cl_index labelz; cl_object old_env; /* Compile evaluation of tag */ compile_form(pop(&args), FLAG_REG0); old_env = ENV->variables; c_register_block(MAKE_FIXNUM(0)); /* Compile jump point */ labelz = asm_jmp(OP_CATCH); /* Compile body of CATCH */ compile_body(args, FLAG_VALUES); asm_op(OP_EXIT_FRAME); asm_complete(OP_CATCH, labelz); ENV->variables = old_env; return FLAG_VALUES; } static int c_compiler_let(cl_object args, int flags) { cl_object bindings; bds_ptr old_bds_top = cl_env.bds_top; for (bindings = pop(&args); !endp(bindings); ) { cl_object form = pop(&bindings); cl_object var = pop(&form); cl_object value = pop_maybe_nil(&form); bds_bind(var, value); } flags = compile_body(args, flags); bds_unwind(old_bds_top); return flags; } /* There are three operators which perform explicit jumps, but almost all other operators use labels in one way or another. 1) Jumps are always relative to the place where the jump label is retrieved so that if the label is in vector[0], then the destination is roughly vector + vector[0]. 2) The three jump forms are [OP_JMP + label] ; Unconditional jump [OP_JNIL + label] ; Jump if VALUES(0) == Cnil [OP_JT + label] ; Jump if VALUES(0) != Cnil It is important to remark that both OP_JNIL and OP_JT truncate the values stack, so that always NVALUES = 1 after performing any of these operations. */ static int c_cond(cl_object args, int flags) { cl_object test, clause; cl_index label_nil, label_exit; if (Null(args)) return compile_form(Cnil, flags); clause = pop(&args); if (ATOM(clause)) FEprogram_error("COND: Illegal clause ~S.",1,clause); test = pop(&clause); flags = maybe_values_or_reg0(flags); if (Ct == test) { /* Default sentence. If no forms, just output T. */ if (Null(clause)) compile_form(Ct, flags); else compile_body(clause, flags); } else { /* Compile the test. If no more forms, just output the first value (this is guaranteed by OP_JT) */ if (Null(clause)) { if (Null(args)) { c_values(cl_list(1,test), flags); return flags; } compile_form(test, FLAG_VALUES); label_exit = asm_jmp(OP_JT); c_cond(args, flags); asm_complete(OP_JT, label_exit); } else { compile_form(test, FLAG_VALUES); label_nil = asm_jmp(OP_JNIL); compile_body(clause, flags); if (Null(args)) asm_complete(OP_JNIL, label_nil); else { label_exit = asm_jmp(OP_JMP); asm_complete(OP_JNIL, label_nil); c_cond(args, flags); asm_complete(OP_JMP, label_exit); } } } return flags; } /* The OP_DO operator saves the lexical environment and establishes a NIL block to execute the enclosed forms, which are typically like the ones shown below. At the exit of the block, either by means of a OP_RETFROM jump or because of normal termination, the lexical environment is restored, and all bindings undone. [OP_DO + labelz] ... ; bindings [JMP + labelt] labelb: ... ; body ... ; stepping forms labelt: ... ; test form [JNIL + label] ... ; output form OP_EXIT_FRAME labelz: */ static int c_while_until(cl_object body, int flags, bool is_while) { cl_object test = pop(&body); cl_index labelt, labelb; flags = maybe_reg0(flags); /* Jump to test */ labelt = asm_jmp(OP_JMP); /* Compile body */ labelb = current_pc(); c_tagbody(body, flags); /* Compile test */ asm_complete(OP_JMP, labelt); compile_form(test, FLAG_VALUES); asm_op(is_while? OP_JT : OP_JNIL); asm_arg(labelb - current_pc()); return flags; } static int c_while(cl_object body, int flags) { return c_while_until(body, flags, 1); } static int c_until(cl_object body, int flags) { return c_while_until(body, flags, 0); } static int c_eval_when(cl_object args, int flags) { cl_object situation = pop(&args); if (member_eq(@'eval', situation) || member_eq(@':execute', situation)) return compile_body(args, flags); else return compile_body(Cnil, flags); } /* The OP_FLET/OP_FLABELS operators change the lexical environment to add a few local functions. [OP_FLET/OP_FLABELS + nfun] fun1 ... fun2 ... OP_UNBIND n labelz: */ static cl_index c_register_functions(cl_object l) { cl_index nfun; for (nfun = 0; !endp(l); nfun++) { cl_object definition = pop(&l); cl_object name = pop(&definition); c_register_function(name); } return nfun; } static int c_labels_flet(int op, cl_object args, int flags) { cl_object l, def_list = pop(&args); struct cl_compiler_env *old_c_env, new_c_env; cl_index nfun; old_c_env = ENV; new_c_env = *ENV; ENV = &new_c_env; /* Remove declarations */ args = c_process_declarations(args); /* If compiling a LABELS form, add the function names to the lexical environment before compiling the functions */ if (op == OP_FLET) nfun = length(def_list); else nfun = c_register_functions(def_list); /* Push the operator (OP_LABELS/OP_FLET) with the number of functions */ asm_op2(op, nfun); /* Compile the local functions now. */ for (l = def_list; !endp(l); ) { cl_object definition = pop(&l); cl_object name = pop(&definition); asm_c(make_lambda(name, definition)); } /* If compiling a FLET form, add the function names to the lexical environment after compiling the functions */ if (op == OP_FLET) c_register_functions(def_list); /* Compile the body of the form with the local functions in the lexical environment. */ flags = compile_body(args, flags); /* Restore and return */ c_undo_bindings(old_c_env->variables); old_c_env->constants = ENV->constants; ENV = old_c_env; return flags; } static int c_flet(cl_object args, int flags) { return c_labels_flet(OP_FLET, args, flags); } /* There are two operators that produce functions. The first one is [OP_FUNCTION + name] which takes the function binding of SYMBOL. The second one is OP_CLOSE interpreted which encloses the INTERPRETED function in the current lexical environment. */ static int c_function(cl_object args, int flags) { cl_object function = pop(&args); if (!endp(args)) FEprogram_error("FUNCTION: Too many arguments.", 0); return asm_function(function, flags); } static int asm_function(cl_object function, int flags) { if (!Null(si_valid_function_name_p(function))) { cl_object ndx = c_tag_ref(function, @':function'); if (Null(ndx)) { /* Globally defined function */ asm_op2c(OP_FUNCTION, function); } else { /* Function from a FLET/LABELS form */ asm_op2(OP_LFUNCTION, fix(ndx)); } } else if (CONSP(function) && CAR(function) == @'lambda') { asm_op2c(OP_CLOSE, make_lambda(Cnil, CDR(function))); } else if (CONSP(function) && CAR(function) == @'ext::lambda-block') { cl_object name = CADR(function); cl_object body = CDDR(function); asm_op2c(OP_CLOSE, make_lambda(name, body)); } else { FEprogram_error("FUNCTION: Not a valid argument ~S.", 1, function); } return FLAG_REG0; } static int c_go(cl_object args, int flags) { cl_object tag = pop(&args); cl_object info = c_tag_ref(tag, @':tag'); if (Null(info)) FEprogram_error("GO: Unknown tag ~S.", 1, tag); if (!Null(args)) FEprogram_error("GO: Too many arguments.",0); asm_op2(OP_GO, fix(CAR(info))); asm_c(CDR(info)); return flags; } /* To get an idea of what goes on ... ; test form JNIL labeln ... ; form for true case JMP labelz ... ; form for nil case labelz: */ static int c_if(cl_object form, int flags) { cl_index label_nil, label_true; /* Compile test */ compile_form(pop(&form), FLAG_VALUES); label_nil = asm_jmp(OP_JNIL); /* Compile THEN ... */ flags = maybe_values_or_reg0(flags); compile_form(pop(&form), flags); /* ... and then ELSE */ if (endp(form)) { /* ... in case there is any! */ asm_complete(OP_JNIL, label_nil); } else { label_true = asm_jmp(OP_JMP); asm_complete(OP_JNIL, label_nil); compile_form(pop(&form), flags); asm_complete(OP_JMP, label_true); if (!Null(form)) FEprogram_error("IF: Too many arguments.", 0); } return flags; } static int c_labels(cl_object args, int flags) { return c_labels_flet(OP_LABELS, args, flags); } /* The OP_PUSHENV saves the current lexical environment to allow several bindings. OP_PUSHENV ... ; binding forms ... ; body OP_EXIT There are four forms which perform bindings OP_PBIND name ; Bind NAME in the lexical env. using ; a value from the stack OP_PBINDS name ; Bind NAME as special variable using ; a value from the stack OP_BIND name ; Bind NAME in the lexical env. using ; VALUES(0) OP_BINDS name ; Bind NAME as special variable using ; VALUES(0) After a variable has been bound, there are several ways to refer to it. 1) Refer to the n-th variable in the lexical environment [SYMVAL + n] 2) Refer to the value of a special variable or constant SYMVALS name 3) Push the value of the n-th variable of the lexical environment [PUSHV + n] 4) Push the value of a special variable or constant PUSHVS name */ static int c_let_leta(int op, cl_object args, int flags) { cl_object bindings, specials, body, l, vars; cl_object old_variables = ENV->variables; bindings = cl_car(args); body = c_process_declarations(CDR(args)); specials = VALUES(3); /* Optimize some common cases */ switch(length(bindings)) { case 0: return c_locally(CDR(args), flags); case 1: op = OP_BIND; break; } for (vars=Cnil, l=bindings; !endp(l); ) { cl_object aux = pop(&l); cl_object var, value; if (ATOM(aux)) { var = aux; value = Cnil; } else { var = pop(&aux); value = pop_maybe_nil(&aux); if (!Null(aux)) FEprogram_error("LET: Ill formed declaration.",0); } if (!SYMBOLP(var)) FEillegal_variable_name(var); if (op == OP_PBIND) { compile_form(value, FLAG_PUSH); vars = CONS(var, vars); } else { compile_form(value, FLAG_REG0); c_bind(var, specials); } } while (!endp(vars)) c_pbind(pop(&vars), specials); /* We have to register all specials, because in the list * there might be some variable that is not bound by this LET form */ c_declare_specials(specials); flags = compile_body(body, flags); c_undo_bindings(old_variables); return flags; } static int c_let(cl_object args, int flags) { return c_let_leta(OP_PBIND, args, flags); } static int c_leta(cl_object args, int flags) { return c_let_leta(OP_BIND, args, flags); } static int c_locally(cl_object args, int flags) { cl_object old_env = ENV->variables; /* First use declarations by declaring special variables... */ args = c_process_declarations(args); c_declare_specials(VALUES(3)); /* ...and then process body */ flags = compile_body(args, flags); ENV->variables = old_env; return flags; } /* MACROLET The current lexical environment is saved. A new one is prepared with the definitions of these macros, and this environment is used to compile the body. */ static int c_macrolet(cl_object args, int flags) { cl_object def_list; cl_object old_macros = ENV->macros; /* Pop the list of definitions */ for (def_list = pop(&args); !endp(def_list); ) { cl_object definition = pop(&def_list); cl_object name = pop(&definition); cl_object arglist = pop(&definition); cl_object macro, function; macro = funcall(4, @'si::expand-defmacro', name, arglist, definition); function = make_lambda(name, CDR(macro)); c_register_macro(name, function); } /* Remove declarations */ args = c_process_declarations(args); flags = compile_body(args, flags); ENV->macros = old_macros; return flags; } static int c_multiple_value_bind(cl_object args, int flags) { cl_object old_env = ENV->variables; cl_object vars, value, body, specials; cl_index n; vars = pop(&args); value = pop(&args); body = c_process_declarations(args); specials = VALUES(3); compile_form(value, FLAG_VALUES); n = length(vars); if (n == 0) { c_declare_specials(specials); flags = compile_body(body, flags); ENV->variables = old_env; } else { cl_object old_variables = ENV->variables; for (vars=cl_reverse(vars); n--; ) { cl_object var = pop(&vars); if (!SYMBOLP(var)) FEillegal_variable_name(var); if (c_declared_special(var, specials)) { c_register_var(var, FLAG_PUSH, TRUE); asm_op2(OP_VBINDS, n); } else { c_register_var(var, FALSE, TRUE); asm_op2(OP_VBIND, n); } asm_c(var); } c_declare_specials(specials); flags = compile_body(body, flags); c_undo_bindings(old_variables); } return flags; } static int c_multiple_value_call(cl_object args, int flags) { cl_object name; int op; name = pop(&args); if (endp(args)) { /* If no arguments, just use ordinary call */ return c_funcall(cl_list(1, name), flags); } compile_form(name, FLAG_PUSH); for (op = OP_PUSHVALUES; !endp(args); op = OP_PUSHMOREVALUES) { compile_form(pop(&args), FLAG_VALUES); asm_op(op); } asm_op(OP_MCALL); return FLAG_VALUES; } static int c_multiple_value_prog1(cl_object args, int flags) { compile_form(pop(&args), FLAG_VALUES); if (!endp(args)) { asm_op(OP_PUSHVALUES); compile_body(args, FLAG_VALUES); asm_op(OP_POPVALUES); } return FLAG_VALUES; } static int c_multiple_value_setq(cl_object orig_args, int flags) { cl_object args = orig_args; cl_object orig_vars; cl_object vars = Cnil, values; cl_object old_variables = ENV->variables; cl_index nvars = 0; /* Look for symbol macros, building the list of variables and the list of late assignments. */ for (orig_vars = pop(&args); !endp(orig_vars); ) { cl_object v = pop(&orig_vars); if (!SYMBOLP(v)) FEillegal_variable_name(v); v = c_macro_expand1(v); if (!SYMBOLP(v)) { /* If any of the places to be set is not a variable, * transform MULTIPLE-VALUE-SETQ into (SETF (VALUES ...)) */ args = orig_args; return compile_form(cl_listX(3, @'setf', CONS(@'values', CAR(args)), CDR(args)), flags); } vars = CONS(v, vars); nvars++; } /* Compile values */ values = pop(&args); if (args != Cnil) FEprogram_error("MULTIPLE-VALUE-SETQ: Too many arguments.", 0); if (nvars == 0) { /* No variables */ return compile_form(cl_list(2, @'values', values), flags); } compile_form(values, FLAG_VALUES); /* Compile variables */ asm_op2(OP_MSETQ, nvars); vars = cl_nreverse(vars); while (nvars--) { cl_object var = pop(&vars); cl_fixnum ndx = c_var_ref(var,0); if (ndx < 0) { /* Global variable */ if (var->symbol.stype == stp_constant) FEassignment_to_constant(var); ndx = -1-c_register_constant(var); } asm_arg(ndx); } c_undo_bindings(old_variables); return FLAG_VALUES; } /* The OP_NOT operator reverses the boolean value of VALUES(0). */ static int c_not(cl_object args, int flags) { flags = maybe_reg0(flags); if (flags & FLAG_USEFUL) { /* The value is useful */ compile_form(pop(&args), FLAG_REG0); asm_op(OP_NOT); } else { /* The value may be ignored. */ flags = compile_form(pop(&args), flags); } if (!Null(args)) FEprogram_error("NOT/NULL: Too many arguments.", 0); return flags; } /* The OP_NTHVAL operator moves a value from VALUES(ndx) to VALUES(0). The index NDX is taken from the stack. OP_NTHVAL */ static int c_nth_value(cl_object args, int flags) { compile_form(pop(&args), FLAG_PUSH); /* INDEX */ compile_form(pop(&args), FLAG_VALUES); /* VALUES */ if (args != Cnil) FEprogram_error("NTH-VALUE: Too many arguments.",0); asm_op(OP_NTHVAL); return FLAG_VALUES; } static int c_prog1(cl_object args, int flags) { cl_object form = pop(&args); if (!(flags & FLAG_USEFUL) || (flags & FLAG_PUSH)) { flags = compile_form(form, flags); compile_body(args, FLAG_IGNORE); } else { flags = FLAG_VALUES; compile_form(form, FLAG_PUSH); compile_body(args, FLAG_IGNORE); asm_op(OP_POP); } return flags; } /* The OP_PROGV operator exectures a set of statements in a lexical environment that has been extended with special variables. The list of special variables is taken from the top of the stack, while the list of values is in VALUES(0). ... ; list of variables OP_PUSH ... ; list of values OP_PROGV ... ; body of progv OP_EXIT */ static int c_progv(cl_object args, int flags) { cl_object vars = pop(&args); cl_object values = pop(&args); /* The list of variables is in the stack */ compile_form(vars, FLAG_PUSH); /* The list of values is in VALUES(0) */ compile_form(values, FLAG_VALUES); /* The body is interpreted within an extended lexical environment. However, as all the new variables are special, the compiler need not take care of them */ asm_op(OP_PROGV); flags = compile_body(args, FLAG_VALUES); asm_op(OP_EXIT); return flags; } /* There are four assignment operators. They are 1) Assign VALUES(0) to the lexical variable which occupies the N-th position [OP_SETQ + n] 2) Assign VALUES(0) to the special variable NAME [OP_SETQS + name] 3) Pop a value from the stack and assign it to the lexical variable in the N-th position. [OP_PSETQ + n] 4) Pop a value from the stack and assign it to the special variable denoted by NAME [OP_PSETQS + name] */ static int c_psetq(cl_object old_args, int flags) { cl_object args = Cnil, vars = Cnil; bool use_psetf = FALSE; cl_index nvars = 0; if (endp(old_args)) return compile_body(Cnil, flags); /* We have to make sure that non of the variables which are to be assigned is actually a symbol macro. If that is the case, we invoke (PSETF ...) to handle the macro expansions. */ while (!endp(old_args)) { cl_object var = pop(&old_args); cl_object value = pop(&old_args); if (!SYMBOLP(var)) FEillegal_variable_name(var); var = c_macro_expand1(var); if (!SYMBOLP(var)) use_psetf = TRUE; args = nconc(args, cl_list(2, var, value)); nvars++; } if (use_psetf) { return compile_form(CONS(@'psetf', args), flags); } while (!endp(args)) { cl_object var = pop(&args); cl_object value = pop(&args); vars = CONS(var, vars); compile_form(value, FLAG_PUSH); } while (!endp(vars)) compile_setq(OP_PSETQ, pop(&vars)); return compile_form(Cnil, flags); } /* The OP_RETFROM operator returns from a block using the objects in VALUES() as output values. ... ; output form OP_RETFROM tag ; object which names the block */ static int c_return_aux(cl_object name, cl_object stmt, int flags) { cl_object ndx = c_tag_ref(name, @':block'); cl_object output = pop_maybe_nil(&stmt); if (!SYMBOLP(name) || Null(ndx)) FEprogram_error("RETURN-FROM: Unknown block name ~S.", 1, name); if (stmt != Cnil) FEprogram_error("RETURN-FROM: Too many arguments.", 0); compile_form(output, FLAG_VALUES); asm_op2(OP_RETURN, fix(ndx)); return FLAG_VALUES; } static int c_return(cl_object stmt, int flags) { return c_return_aux(Cnil, stmt, flags); } static int c_return_from(cl_object stmt, int flags) { cl_object name = pop(&stmt); return c_return_aux(name, stmt, flags); } static int c_setq(cl_object args, int flags) { if (endp(args)) return compile_form(Cnil, flags); do { cl_object var = pop(&args); cl_object value = pop(&args); if (!SYMBOLP(var)) FEillegal_variable_name(var); var = c_macro_expand1(var); if (SYMBOLP(var)) { flags = FLAG_REG0; compile_form(value, FLAG_REG0); compile_setq(OP_SETQ, var); } else { flags = endp(args)? FLAG_VALUES : FLAG_REG0; compile_form(cl_list(3, @'setf', var, value), flags); } } while (!endp(args)); return flags; } static int c_symbol_macrolet(cl_object args, int flags) { cl_object def_list, specials, body; cl_object old_variables = ENV->variables; def_list = pop(&args); body = c_process_declarations(args); specials = VALUES(3); /* Scan the list of definitions */ for (; !endp(def_list); ) { cl_object definition = pop(&def_list); cl_object name = pop(&definition); cl_object expansion = pop(&definition); cl_object arglist = cl_list(2, @gensym(0), @gensym(0)); cl_object function; if (name->symbol.stype != stp_ordinary || c_var_ref(name,1) == -2) { FEprogram_error("SYMBOL-MACROLET: Symbol ~A cannot be \ declared special and appear in a symbol-macrolet.", 1, name); } definition = cl_list(2, arglist, cl_list(2, @'quote', expansion)); function = make_lambda(name, definition); c_register_symbol_macro(name, function); } c_declare_specials(specials); flags = compile_body(body, flags); ENV->variables = old_variables; return flags; } static int c_tagbody(cl_object args, int flags) { cl_object old_env = ENV->variables; cl_index tag_base; cl_object labels = Cnil, label, body; cl_type item_type; int nt, i; /* count the tags */ for (nt = 0, body = args; !endp(body); body = CDR(body)) { label = CAR(body); item_type = type_of(CAR(body)); if (item_type == t_symbol || item_type == t_fixnum || item_type == t_bignum) { labels = CONS(CONS(label,MAKE_FIXNUM(nt)), labels); nt += 1; } } if (nt == 0) { compile_body(args, 0); return compile_form(Cnil, flags); } c_register_tags(labels); asm_op2(OP_TAGBODY, nt); tag_base = current_pc(); for (i = nt; i; i--) asm_arg(0); for (body = args; !endp(body); body = CDR(body)) { label = CAR(body); item_type = type_of(label); if (item_type == t_symbol || item_type == t_fixnum || item_type == t_bignum) { asm_complete(0, tag_base); tag_base += OPARG_SIZE; } else { compile_form(label, FLAG_IGNORE); } } asm_op(OP_EXIT_TAGBODY); ENV->variables = old_env; return FLAG_REG0; } /* The OP_THROW jumps to an enclosing OP_CATCH whose tag matches the one of the throw. The tag is taken from the stack, while the output values are left in VALUES(). */ static int c_throw(cl_object stmt, int flags) { /* FIXME! Do we apply the right protocol here? */ cl_object tag = pop(&stmt); cl_object form = pop(&stmt); if (stmt != Cnil) FEprogram_error("THROW: Too many arguments.",0); compile_form(tag, FLAG_PUSH); compile_form(form, FLAG_VALUES); asm_op(OP_THROW); return flags; } static int c_unwind_protect(cl_object args, int flags) { cl_index label = asm_jmp(OP_PROTECT); flags = maybe_values(flags); /* Compile form to be protected */ flags = compile_form(pop(&args), flags); asm_op(OP_PROTECT_NORMAL); /* Compile exit clause */ asm_complete(OP_PROTECT, label); compile_body(args, FLAG_IGNORE); asm_op(OP_PROTECT_EXIT); return flags; } /* The OP_VALUES moves N values from the stack to VALUES(). [OP_VALUES + n] */ static int c_values(cl_object args, int flags) { if (!(flags & FLAG_USEFUL)) { /* This value will be discarded. We do not care to push it or to save it in VALUES */ if (endp(args)) return flags; return compile_body(args, flags); } else if (flags & FLAG_PUSH) { /* We only need the first value. However, the rest of arguments HAVE to be be evaluated */ if (endp(args)) return compile_form(Cnil, flags); flags = compile_form(pop(&args), FLAG_PUSH); compile_body(args, FLAG_IGNORE); return flags; } else if (endp(args)) { asm_op(OP_NOP); } else { int n = 0; while (!endp(args)) { compile_form(pop_maybe_nil(&args), FLAG_PUSH); n++; } asm_op2(OP_VALUES, n); } return FLAG_VALUES; } static int compile_form(cl_object stmt, int flags) { cl_object code_walker = SYM_VAL(@'si::*code-walker*'); compiler_record *l; cl_object function; bool push = flags & FLAG_PUSH; int new_flags; /* FIXME! We should protect this region with error handling */ BEGIN: if (code_walker != OBJNULL) { stmt = funcall(3, SYM_VAL(@'si::*code-walker*'), stmt, CONS(ENV->variables, ENV->macros)); } /* * First try with variable references and quoted constants */ if (ATOM(stmt)) { cl_fixnum index; if (SYMBOLP(stmt) && stmt != Cnil) { cl_object stmt1 = c_macro_expand1(stmt); if (stmt1 != stmt) { stmt = stmt1; goto BEGIN; } index = c_var_ref(stmt,0); if (index >= 0) { asm_op2(push? OP_PUSHV : OP_VAR, index); } else { asm_op2c(push? OP_PUSHVS : OP_VARS, stmt); } } else QUOTED: if ((flags & FLAG_USEFUL)) { if (stmt == Cnil) { asm_op(push? OP_PUSHNIL : OP_NIL); } else { asm_op2c(push? OP_PUSHQ : OP_QUOTE, stmt); } } if (flags & FLAG_VALUES) new_flags = (flags & ~FLAG_VALUES) | FLAG_REG0; else new_flags = flags; goto OUTPUT; } /* * Next try with special forms. */ function = CAR(stmt); if (!SYMBOLP(function)) goto ORDINARY_CALL; if (function == @'quote') { stmt = CDR(stmt); if (CDR(stmt) != Cnil) FEprogram_error("QUOTE: Too many arguments.",0); stmt = CAR(stmt); goto QUOTED; } for (l = database; l->symbol != OBJNULL; l++) if (l->symbol == function) { ENV->lexical_level += l->lexical_increment; if (ENV->stepping && function != @'function' && ENV->lexical_level) asm_op2c(OP_STEPIN, stmt); new_flags = (*(l->compiler))(CDR(stmt), flags); if (ENV->stepping && function != @'function' && ENV->lexical_level) asm_op(OP_STEPOUT); goto OUTPUT; } /* * Next try to macroexpand */ { cl_object new_stmt = c_macro_expand1(stmt); if (new_stmt != stmt){ stmt = new_stmt; goto BEGIN; } } if (function->symbol.isform) FEprogram_error("BYTECOMPILE-FORM: Found no macroexpander \ for special form ~S.", 1, function); ORDINARY_CALL: /* * Finally resort to ordinary function calls. */ if (ENV->stepping) asm_op2c(OP_STEPIN, stmt); new_flags = c_call(stmt, flags); OUTPUT: /* flags new_flags action PUSH PUSH --- PUSH VALUES OP_PUSH PUSH REG0 OP_PUSH VALUES PUSH Impossible VALUES VALUES --- VALUES REG0 OP_VALUEREG0 REG0 PUSH Impossible REG0 VALUES --- REG0 REG0 --- */ if (push) { if (new_flags & (FLAG_REG0 | FLAG_VALUES)) asm_op(OP_PUSH); } else if (flags & FLAG_VALUES) { if (new_flags & FLAG_REG0) { asm_op(OP_VALUEREG0); } else if (new_flags & FLAG_PUSH) { FEerror("Internal error in bytecodes compiler", 0); } } else if (new_flags & FLAG_PUSH) { FEerror("Internal error in bytecodes compiler", 0); } return flags; } static int compile_body(cl_object body, int flags) { if (ENV->lexical_level == 0 && !endp(body)) { while (!endp(CDR(body))) { struct cl_compiler_env *old_c_env = ENV; struct cl_compiler_env new_c_env = *old_c_env; cl_index handle; cl_object bytecodes; ENV = &new_c_env; handle = asm_begin(); compile_form(CAR(body), FLAG_VALUES); asm_op(OP_EXIT); VALUES(0) = Cnil; NVALUES = 0; bytecodes = asm_end(handle); interpret(bytecodes, bytecodes->bytecodes.code); asm_clear(handle); ENV = old_c_env; #ifdef GBC_BOEHM GC_free(bytecodes->bytecodes.code); GC_free(bytecodes->bytecodes.data); GC_free(bytecodes); #endif body = CDR(body); } } if (endp(body)) { return compile_form(Cnil, flags); } else { do { if (endp(CDR(body))) return compile_form(CAR(body), flags); compile_form(CAR(body), FLAG_IGNORE); body = CDR(body); } while (1); } } /* ----------------------------- PUBLIC INTERFACE ---------------------------- */ /* ------------------------------------------------------------ LAMBDA OBJECTS: An interpreted function is a vector made of the following components #(LAMBDA {block-name | NIL} {variable-env | NIL} {function-env | NIL} {block-env | NIL} (list of variables declared special) Nreq {var}* ; required arguments Nopt {var value flag}* ; optional arguments {rest-var NIL} ; rest variable {T | NIL} ; allow other keys? Nkey {key var value flag}* ; keyword arguments Naux {var init} ; auxiliary variables documentation-string list-of-declarations {form}* ; body) ------------------------------------------------------------ */ #define push(v,l) l = CONS(v, l) #define push_var(v, list) \ if (context == @'function') { \ assert_type_symbol(v); \ if (v->symbol.stype == stp_constant) \ FEillegal_variable_name(v); } \ push(v, list) /* Handles special declarations, removes declarations from body */ @(defun si::process_declarations (body &optional doc) cl_object documentation = Cnil, declarations = Cnil, form, specials = Cnil; cl_object decls, vars, v; @ /* BEGIN: SEARCH DECLARE */ for (; !endp(body); body = CDR(body)) { form = CAR(body); if (!Null(doc) && type_of(form) == t_string && !endp(CDR(body))) { if (documentation == Cnil) documentation = form; else break; continue; } if (ATOM(form) || (CAR(form) != @'declare')) break; for (decls = CDR(form); !endp(decls); decls = CDR(decls)) { cl_object sentence = CAR(decls); if (ATOM(sentence)) FEill_formed_input(); push(sentence, declarations); if (CAR(sentence) == @'special') for (vars = CDR(sentence); !endp(vars); vars = CDR(vars)) { v = CAR(vars); assert_type_symbol(v); push(v,specials); } } } /* END: SEARCH DECLARE */ @(return declarations body documentation specials) @) static size_t si_process_lambda_ctr = 0; cl_object si_process_lambda(cl_object lambda) { cl_object documentation, declarations, specials; cl_object lambda_list, body; if (ATOM(lambda)) FEprogram_error("LAMBDA: No lambda list.", 0); lambda_list = CAR(lambda); declarations = @si::process-declarations(2, CDR(lambda), Ct); body = VALUES(1); documentation = VALUES(2); specials = VALUES(3); si_process_lambda_ctr++; VALUES(0) = si_process_lambda_list(lambda_list, @'function'); VALUES(NVALUES++) = documentation; VALUES(NVALUES++) = specials; VALUES(NVALUES++) = declarations; VALUES(NVALUES++) = body; return VALUES(0); } /* * (si::process-lambda-list lambda-list context) * * Parses different types of lambda lists. CONTEXT may be MACRO, FTYPE, * FUNCTION or DESTRUCTURING-BIND, and determines the valid sytax. The output * is made of several values: * * VALUES(0) = (N req1 ... ) ; required values * VALUES(1) = (N opt1 init1 flag1 ... ) ; optional values * VALUES(2) = rest-var ; rest-variable, if any * VALUES(3) = key-flag ; T if &key was supplied * VALUES(4) = (N key1 var1 init1 flag1 ... ) ; keyword arguments * VALUES(5) = allow-other-keys ; flag &allow-other-keys * VALUES(6) = (N aux1 init1 ... ) ; auxiliary variables * * 1°) The prefix "N" is an integer value denoting the number of * variables which are declared within this section of the lambda * list. * * 2°) The INIT* arguments are lisp forms which are evaluated when * no value is provided. * * 3°) The FLAG* arguments is the name of a variable which holds a * boolean value in case an optional or keyword argument was * provided. If it is NIL, no such variable exists. */ cl_object si_process_lambda_list(cl_object org_lambda_list, cl_object context) { #define AT_REQUIREDS 0 #define AT_OPTIONALS 1 #define AT_REST 2 #define AT_KEYS 3 #define AT_OTHER_KEYS 4 #define AT_AUXS 5 cl_object v, key, init, spp, lambda_list = org_lambda_list; cl_object reqs = Cnil, opts = Cnil, keys = Cnil, rest = Cnil, auxs = Cnil; int nreq = 0, nopt = 0, nkey = 0, naux = 0, stage = 0; cl_object allow_other_keys = Cnil; cl_object key_flag = Cnil; if (!CONSP(lambda_list) && lambda_list != Cnil) goto ILLEGAL_LAMBDA; LOOP: if (ATOM(lambda_list)) { if (lambda_list == Cnil) goto OUTPUT; else if (context == @'function') goto ILLEGAL_LAMBDA; else { v = lambda_list; lambda_list = Cnil; goto REST; } } v = CAR(lambda_list); lambda_list = CDR(lambda_list); if (v == @'&optional') { if (stage >= AT_OPTIONALS) goto ILLEGAL_LAMBDA; stage = AT_OPTIONALS; goto LOOP; } if (v == @'&rest' || (v == @'&body' && (context == @'si::macro' || context == @'destructuring-bind'))) { if (ATOM(lambda_list)) goto ILLEGAL_LAMBDA; v = CAR(lambda_list); lambda_list = CDR(lambda_list); REST: if (stage >= AT_REST) goto ILLEGAL_LAMBDA; stage = AT_REST; rest = v; goto LOOP; } if (v == @'&key') { if (stage >= AT_KEYS) goto ILLEGAL_LAMBDA; key_flag = Ct; stage = AT_KEYS; goto LOOP; } if (v == @'&aux') { if (stage >= AT_AUXS) goto ILLEGAL_LAMBDA; stage = AT_AUXS; goto LOOP; } if (v == @'&allow-other-keys') { allow_other_keys = Ct; if (stage != AT_KEYS) goto ILLEGAL_LAMBDA; stage = AT_OTHER_KEYS; goto LOOP; } switch (stage) { case AT_REQUIREDS: nreq++; push_var(v, reqs); break; case AT_OPTIONALS: spp = Cnil; init = Cnil; if (!ATOM(v)) { cl_object x = v; v = CAR(x); if (!endp(x = CDR(x))) { init = CAR(x); if (!endp(x = CDR(x))) { spp = CAR(x); if (!endp(CDR(x))) goto ILLEGAL_LAMBDA; } } } nopt++; push_var(v, opts); push(init, opts); if (spp != Cnil) { push_var(spp, opts); } else { push(Cnil, opts); } break; case AT_REST: /* If we get here, the user has declared more than one * &rest variable, as in (lambda (&rest x y) ...) */ goto ILLEGAL_LAMBDA; case AT_KEYS: init = Cnil; spp = Cnil; if (!ATOM(v)) { cl_object x = v; v = CAR(x); if (!endp(x = CDR(x))) { init = CAR(x); if (!endp(x = CDR(x))) { spp = CAR(x); if (!endp(CDR(x))) goto ILLEGAL_LAMBDA; } } } if (CONSP(v)) { key = CAR(v); if (endp(CDR(v)) || !endp(CDDR(v))) goto ILLEGAL_LAMBDA; v = CADR(v); if (context == @'function') assert_type_symbol(v); assert_type_symbol(key); } else { int intern_flag; assert_type_symbol(v); key = intern(v->symbol.name, cl_core.keyword_package, &intern_flag); } nkey++; push(key, keys); push_var(v, keys); push(init, keys); if (Null(spp)) { push(Cnil, keys); } else { push_var(spp, keys); } break; default: if (ATOM(v)) { init = Cnil; } else if (endp(CDDR(v))) { cl_object x = v; v = CAR(x); init = CADR(x); } else goto ILLEGAL_LAMBDA; naux++; push_var(v, auxs); push(init, auxs); } goto LOOP; OUTPUT: if ((nreq+nopt+(!Null(rest))+nkey) >= CALL_ARGUMENTS_LIMIT) FEprogram_error("LAMBDA: Argument list ist too long, ~S.", 1, org_lambda_list); @(return CONS(MAKE_FIXNUM(nreq), cl_nreverse(reqs)) CONS(MAKE_FIXNUM(nopt), cl_nreverse(opts)) rest key_flag CONS(MAKE_FIXNUM(nkey), cl_nreverse(keys)) allow_other_keys cl_nreverse(auxs)) ILLEGAL_LAMBDA: FEprogram_error("LAMBDA: Illegal lambda list ~S.", 1, org_lambda_list); } static cl_object c_default(cl_index base_pc, cl_object deflt) { cl_type t = type_of(deflt); if (((t == t_symbol) && (deflt->symbol.stype == stp_constant) && !FIXNUMP(SYM_VAL(deflt)))) { /* FIXME! Shouldn't this happen only in unsafe mode */ deflt = SYM_VAL(deflt); } else if (CONSP(deflt) && (CAR(deflt) == @'quote') && !FIXNUMP(CADR(deflt))) { deflt = CADR(deflt); } else if ((t == t_symbol) || (t == t_cons) || (t == t_fixnum)) { cl_index pc = current_pc()-base_pc; compile_form(deflt, FLAG_VALUES); asm_op(OP_EXIT); deflt = MAKE_FIXNUM(pc); } return deflt; } static void c_register_var2(register cl_object var, register cl_object *specials) { /* This is similar to c_register_var() but we enlarge the list * of special variables that will be finally stored in the * prologue of the interpreted function. */ if (Null(var)) return; if (member_eq(var, *specials)) c_register_var(var, TRUE, TRUE); else if (var->symbol.stype == stp_special) { *specials = CONS(var, *specials); c_register_var(var, TRUE, TRUE); } else if (var->symbol.stype == stp_constant) FEassignment_to_constant(var); else c_register_var(var, FALSE, TRUE); } cl_object make_lambda(cl_object name, cl_object lambda) { cl_object reqs, opts, rest, key, keys, auxs, allow_other_keys; cl_object specials, doc, decl, body, output; cl_index label; int nopts, nkeys; cl_index handle; struct cl_compiler_env *old_c_env, new_c_env; old_c_env = ENV; new_c_env = *ENV; ENV = &new_c_env; ENV->lexical_level++; ENV->coalesce = 0; reqs = si_process_lambda(lambda); opts = VALUES(1); rest = VALUES(2); key = VALUES(3); keys = VALUES(4); allow_other_keys = VALUES(5); auxs = VALUES(6); doc = VALUES(7); specials = VALUES(8); decl = VALUES(9); body = VALUES(10); handle = asm_begin(); /* Transform (SETF fname) => fname */ if (Null(si_valid_function_name_p(name))) FEprogram_error("LAMBDA: Not a valid function name ~S",1,name); ENV->constants = reqs; /* Special arguments */ reqs = CDR(reqs); while (!endp(reqs)) { cl_object v = pop(&reqs); c_register_var2(v, &specials); } nopts = fix(CAR(opts)); /* Optional arguments */ ENV->constants = nconc(ENV->constants, opts); asm_constant(rest); /* Name of &rest argument */ if (Null(key)) { asm_constant(MAKE_FIXNUM(0)); /* &key was not supplied */ nkeys = 0; } else { asm_constant(allow_other_keys); /* Value of &allow-other-keys */ nkeys = fix(CAR(keys)); /* Keyword arguments */ ENV->constants = nconc(ENV->constants, keys); } asm_constant(doc); asm_constant(decl); label = asm_jmp(OP_JMP); opts = CDR(opts); while (nopts--) { CADR(opts) = c_default(handle, CADR(opts)); c_register_var2(CAR(opts), &specials); c_register_var2(CADDR(opts), &specials); opts = CDDDR(opts); } c_register_var2(rest, &specials); keys = CDR(keys); while (nkeys--) { CADDR(keys) = c_default(handle, CADDR(keys)); c_register_var2(CADR(keys), &specials); c_register_var2(CADDDR(keys), &specials); keys = CDDDDR(keys); } ENV->coalesce = TRUE; if ((current_pc() - label) == OPARG_SIZE) set_pc(handle); else asm_complete(OP_JMP, label); while (!endp(auxs)) { /* Local bindings */ cl_object var = pop(&auxs); cl_object value = pop(&auxs); compile_form(value, FLAG_REG0); c_bind(var, specials); } c_declare_specials(specials); if (!Null(name)) { compile_form(@list*(3, @'block', si_function_block_name(name), body), FLAG_VALUES); } else { compile_body(body, FLAG_VALUES); } asm_op(OP_EXIT); output = asm_end(handle); output->bytecodes.name = name; output->bytecodes.specials = specials; output->bytecodes.definition = Null(SYM_VAL(@'si::*keep-definitions*'))? Cnil : lambda; ENV = old_c_env; return output; } cl_object si_function_block_name(cl_object name) { if (SYMBOLP(name)) @(return name) if (CONSP(name) && CAR(name) == @'setf' && CONSP(CDR(name)) && SYMBOLP(CADR(name)) && Null(CDDR(name))) @(return CADR(name)) FEinvalid_function_name(name); } cl_object si_valid_function_name_p(cl_object name) { cl_object output = Cnil; if (SYMBOLP(name)) output = Ct; else if (CONSP(name) && CAR(name) == @'setf') { name = CDR(name); if (CONSP(name) && SYMBOLP(CAR(name)) && CDR(name) == Cnil) output = Ct; } @(return output); } cl_object si_make_lambda(cl_object name, cl_object rest) { cl_object lambda; struct cl_compiler_env *old_c_env, new_c_env; old_c_env = ENV; c_new_env(&new_c_env, Cnil); CL_UNWIND_PROTECT_BEGIN { lambda = make_lambda(name,rest); } CL_UNWIND_PROTECT_EXIT { ENV = old_c_env; } CL_UNWIND_PROTECT_END; @(return lambda) } @(defun si::eval-with-env (form &optional (env Cnil) (stepping Cnil)) struct cl_compiler_env *old_c_env = ENV; struct cl_compiler_env new_c_env; volatile cl_index handle; struct ihs_frame ihs; cl_object bytecodes; @ /* * Compile to bytecodes. */ ENV = &new_c_env; c_new_env(&new_c_env, env); cl_env.lex_env = env; ENV->stepping = stepping != Cnil; handle = asm_begin(); CL_UNWIND_PROTECT_BEGIN { compile_form(form, FLAG_VALUES); asm_op(OP_EXIT); bytecodes = asm_end(handle); } CL_UNWIND_PROTECT_EXIT { /* Clear up */ ENV = old_c_env; memset(&new_c_env, 0, sizeof(new_c_env)); } CL_UNWIND_PROTECT_END; /* * Interpret using the given lexical environment. */ ihs_push(&ihs, @'eval'); cl_env.lex_env = env; VALUES(0) = Cnil; NVALUES = 0; interpret(bytecodes, bytecodes->bytecodes.code); #ifdef GBC_BOEHM GC_free(bytecodes->bytecodes.code); GC_free(bytecodes->bytecodes.data); GC_free(bytecodes); #endif ihs_pop(); return VALUES(0); @)