cmpc: clean up numeric optimizers and propagators

- merge bits and numeric optimizers in a single file
- move c/c++ optimizers to the backend
- move bits and numeric propagators to a separate file
This commit is contained in:
Daniel Kochmański 2023-06-06 09:52:54 +02:00
parent 1472bb18e6
commit 03be475fb9
5 changed files with 378 additions and 371 deletions

View file

@ -0,0 +1,137 @@
;;;; -*- Mode: Lisp; Syntax: Common-Lisp; indent-tabs-mode: nil; Package: C -*-
;;;; vim: set filetype=lisp tabstop=8 shiftwidth=2 expandtab:
;;;;
;;;; Copyright (c) 2010, Juan Jose Garcia Ripoll
;;;; Copyright (c) 2023, Daniel Kochmański
;;;;
;;;; See the file 'LICENSE' for the copyright details.
;;;;
;;;; C/C++ specific optimizer for numerical expressions.
(in-package "COMPILER")
;;;
;;; Bit fiddling. It is a bit tricky because C does not allow
;;; shifts in << or >> which exceed the integer size. In those
;;; cases the compiler may do whatever it wants (and gcc does!)
;;;
(define-c-inliner shift (return-type argument orig-shift)
(let* ((arg-type (inlined-arg-type argument))
(arg-c-type (lisp-type->rep-type arg-type))
(return-c-type (lisp-type->rep-type return-type))
(shift (loc-immediate-value (inlined-arg-loc orig-shift))))
(if (or (not (c-integer-rep-type-p arg-c-type))
(not (c-integer-rep-type-p return-c-type)))
(produce-inline-loc (list argument orig-shift) '(:object :fixnum) '(:object)
"ecl_ash(#0,#1)" nil t)
(let* ((arg-bits (c-integer-rep-type-bits arg-c-type))
(return-bits (c-integer-rep-type-bits return-c-type))
(max-type (if (and (plusp shift)
(< arg-bits return-bits))
return-c-type
arg-c-type)))
(produce-inline-loc (list argument) (list max-type) (list return-type)
(format nil
(if (minusp shift)
"((#0) >> (~D))"
"((#0) << (~D))")
(abs shift))
nil t)))))
;;;
;;; Inliners for arithmetic operations.
;;;
(defun most-generic-number-rep-type (r1 r2)
(let* ((r1 (rep-type-record r1))
(r2 (rep-type-record r2)))
(rep-type-name (if (< (rep-type-index r1) (rep-type-index r2))
r2
r1))))
(defun inline-binop (expected-type arg1 arg2 consing non-consing)
(let ((arg1-type (inlined-arg-type arg1))
(arg2-type (inlined-arg-type arg2)))
(if (and (policy-assume-right-type)
(c-number-type-p expected-type)
(c-number-type-p arg1-type)
(c-number-type-p arg2-type))
;; The input arguments have to be coerced to a C
;; type that fits the output, to avoid overflow which
;; would happen if we used say, long c = (int)a * (int)b
;; as the output would be an integer, not a long.
(let* ((arg1-rep (lisp-type->rep-type arg1-type))
(arg2-rep (lisp-type->rep-type arg2-type))
(out-rep (lisp-type->rep-type expected-type))
(max-rep (most-generic-number-rep-type
(most-generic-number-rep-type
arg1-rep arg2-rep) out-rep))
(max-name (rep-type->c-name max-rep)))
(produce-inline-loc
(list arg1 arg2)
(list arg1-rep arg2-rep)
(list max-rep)
(format nil "(~@[(~A)~]#0)~A(~@[(~A)~]#1)"
(unless (eq arg1-rep max-rep) max-name)
non-consing
(unless (eq arg2-rep max-rep) max-name))
nil t))
(produce-inline-loc (list arg1 arg2) '(:object :object) '(:object)
consing nil t))))
(defun inline-arith-unop (expected-type arg1 consing non-consing)
(let ((arg1-type (inlined-arg-type arg1)))
(if (and (policy-assume-right-type)
(c-number-type-p expected-type)
(c-number-type-p arg1-type))
(produce-inline-loc (list arg1)
(list (lisp-type->rep-type arg1-type))
(list (lisp-type->rep-type expected-type))
non-consing nil t)
(produce-inline-loc (list arg1) '(:object :object) '(:object)
consing nil t))))
(define-c-inliner + (return-type &rest arguments &aux arg1 arg2)
(when (null arguments)
(return '(fixnum-value 0)))
(setf arg1 (pop arguments))
(when (null arguments)
(return (inlined-arg-loc arg1)))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_plus(#0,#1)" #\+)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))
(define-c-inliner - (return-type arg1 &rest arguments &aux arg2)
(when (null arguments)
(return (inline-arith-unop return-type arg1 "ecl_negate(#0)" "-(#0)")))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_minus(#0,#1)" #\-)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))
(define-c-inliner * (return-type &rest arguments &aux arg1 arg2)
(when (null arguments)
(return '(fixnum-value 1)))
(setf arg1 (pop arguments))
(when (null arguments)
(return (inlined-arg-loc arg1)))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_times(#0,#1)" #\*)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))
(define-c-inliner / (return-type arg1 &rest arguments &aux arg2)
(when (null arguments)
(return (inline-arith-unop return-type arg1
"ecl_divide(ecl_make_fixnum(1),(#0))" "1/(#0)")))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_divide(#0,#1)" #\/)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))

View file

@ -1,322 +0,0 @@
;;;; -*- Mode: Lisp; Syntax: Common-Lisp; indent-tabs-mode: nil; Package: C -*-
;;;; vim: set filetype=lisp tabstop=8 shiftwidth=2 expandtab:
;;;;
;;;; CMPNUM -- Optimizer for numerical expressions.
;;;; Copyright (c) 2005, Juan Jose Garcia Ripoll
;;;;
;;;; ECoLisp is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Library General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 2 of the License, or (at your option) any later version.
;;;;
;;;; See file '../Copyright' for full details.
(in-package "COMPILER")
;;----------------------------------------------------------------------
;; We transform BOOLE into the individual operations, which have
;; inliners
;;
(define-compiler-macro boole (&whole form op-code op1 op2)
(or (and (constantp op-code *cmp-env*)
(case (ext:constant-form-value op-code *cmp-env*)
(#. boole-clr `(progn (ext:checked-value integer ,op1) (ext:checked-value integer ,op2) 0))
(#. boole-set `(progn (ext:checked-value integer ,op1) (ext:checked-value integer ,op2) -1))
(#. boole-1 `(prog1 (ext:checked-value integer ,op1) (ext:checked-value integer ,op2)))
(#. boole-2 `(progn (ext:checked-value integer ,op1) (ext:checked-value integer ,op2)))
(#. boole-c1 `(prog1 (lognot ,op1) (ext:checked-value integer ,op2)))
(#. boole-c2 `(progn (ext:checked-value integer ,op1) (lognot ,op2)))
(#. boole-and `(logand ,op1 ,op2))
(#. boole-ior `(logior ,op1 ,op2))
(#. boole-xor `(logxor ,op1 ,op2))
(#. boole-eqv `(logeqv ,op1 ,op2))
(#. boole-nand `(lognand ,op1 ,op2))
(#. boole-nor `(lognor ,op1 ,op2))
(#. boole-andc1 `(logandc1 ,op1 ,op2))
(#. boole-andc2 `(logandc2 ,op1 ,op2))
(#. boole-orc1 `(logorc1 ,op1 ,op2))
(#. boole-orc2 `(logorc2 ,op1 ,op2))))
form))
(defun simplify-arithmetic (operator args whole)
(if (every #'numberp args)
(apply operator args)
(let ((l (length args)))
(cond ((> l 2)
(simplify-arithmetic
operator
(list* (simplify-arithmetic operator
(list (first args) (second args))
nil)
(cddr args))
nil))
((= l 2)
(or whole (list* operator args)))
((= l 1)
(if (or (eq operator '*) (eq operator '+))
(first args)
(or whole (list* operator args))))
((eq operator '*)
1)
((eq operator '+)
0)
(t
(error 'simple-program-error
:format-error "Wrong number of arguments for operator ~a in ~a"
:format-arguments (list operator (or whole
(list* operator args)))))))))
(define-compiler-macro * (&whole all &rest args)
(simplify-arithmetic '* args all))
(define-compiler-macro + (&whole all &rest args)
(simplify-arithmetic '+ args all))
(define-compiler-macro / (&whole all &rest args)
(simplify-arithmetic '/ args all))
(define-compiler-macro - (&whole all &rest args)
(simplify-arithmetic '- args all))
;;;
;;; The following are type propagators for arithmetic operations. Note
;;; that some of they have become binary operators.
;;;
(defun maximum-number-type (type1 type2 &key only-real integer-result)
;; Computes the output type of an operation between number types T1
;; and T2 using the rules of floating point contagion. It returns
;; the type of the result, and the types of T1 and T2, if they
;; represent known types, or NUMBER, in other cases.
(let ((t1-eq nil)
(t2-eq nil)
(t1 type1)
(t2 type2)
(output nil)
(complex-t1 nil)
(complex-t2 nil)
(default (if only-real 'REAL 'NUMBER))
(number-types #(FIXNUM INTEGER RATIONAL SINGLE-FLOAT
DOUBLE-FLOAT LONG-FLOAT FLOAT REAL)))
(when (and (consp t1) (eq (first t1) 'COMPLEX))
(setf t1 (second t1) complex-t1 t))
(when (and (consp t2) (eq (first t2) 'COMPLEX))
(setf t2 (second t2) complex-t2 t))
(when (and only-real (or complex-t1 complex-t2))
(return-from maximum-number-type (values default default default)))
(loop for i across number-types
do (when (and (null t1-eq) (type>= i t1))
(when (equalp t1 t2)
(setf t2-eq i))
(setf t1-eq i output i))
(when (and (null t2-eq) (type>= i t2))
(setf t2-eq i output i)))
(unless (and t1-eq t2-eq output)
(setf output default))
(when (and integer-result (or (eq output 'FIXNUM) (eq output 'INTEGER)))
(setf output integer-result))
(when (and (or complex-t1 complex-t2) (not (eq output 'NUMBER)))
(setf output (if (eq output 'REAL) 'COMPLEX `(COMPLEX ,output))))
(values output (if t1-eq type1 default) (if t2-eq type2 default))))
(defun ensure-number-type (general-type &key integer-result)
(maximum-number-type general-type general-type :integer-result integer-result))
(defun ensure-nonrational-type (general-type)
(maximum-number-type general-type 'single-float))
(defun ensure-real-type (general-type)
(maximum-number-type general-type 'integer :only-real t))
(defun arithmetic-propagator (op1-type others integer-result)
;; Propagates types for an associative operator (we do not care which one).
;; We collect either the types of the arguments or 'NUMBER, as a generic
;; expected type. The output type is computed using the rules of floating
;; point contagion, with the exception that an operation between two
;; integers has type INTEGER-RESULT (integer for *,-,+ and rational else)
(multiple-value-bind (result-type op1-type)
(ensure-number-type op1-type :integer-result integer-result)
(loop with arg-types = (list op1-type)
for x in others
for op2-type = x
do (progn
(multiple-value-setq (result-type op1-type op2-type)
(maximum-number-type result-type op2-type :integer-result integer-result))
(setf arg-types (cons op2-type arg-types)))
finally (return (values (nreverse arg-types) result-type)))))
(def-type-propagator * (fname op1 &rest others)
(arithmetic-propagator op1 others 'integer))
(copy-type-propagator '* '(+ -))
(def-type-propagator / (fname op1 &rest others)
(arithmetic-propagator op1 others 'rational))
(defun most-generic-number-rep-type (r1 r2)
(let* ((r1 (rep-type-record r1))
(r2 (rep-type-record r2)))
(rep-type-name (if (< (rep-type-index r1) (rep-type-index r2))
r2
r1))))
(defun inline-binop (expected-type arg1 arg2 consing non-consing)
(let ((arg1-type (inlined-arg-type arg1))
(arg2-type (inlined-arg-type arg2)))
(if (and (policy-assume-right-type)
(c-number-type-p expected-type)
(c-number-type-p arg1-type)
(c-number-type-p arg2-type))
;; The input arguments have to be coerced to a C
;; type that fits the output, to avoid overflow which
;; would happen if we used say, long c = (int)a * (int)b
;; as the output would be an integer, not a long.
(let* ((arg1-rep (lisp-type->rep-type arg1-type))
(arg2-rep (lisp-type->rep-type arg2-type))
(out-rep (lisp-type->rep-type expected-type))
(max-rep (most-generic-number-rep-type
(most-generic-number-rep-type
arg1-rep arg2-rep) out-rep))
(max-name (rep-type->c-name max-rep)))
(produce-inline-loc
(list arg1 arg2)
(list arg1-rep arg2-rep)
(list max-rep)
(format nil "(~@[(~A)~]#0)~A(~@[(~A)~]#1)"
(unless (eq arg1-rep max-rep) max-name)
non-consing
(unless (eq arg2-rep max-rep) max-name))
nil t))
(produce-inline-loc (list arg1 arg2) '(:object :object) '(:object)
consing nil t))))
(defun inline-arith-unop (expected-type arg1 consing non-consing)
(let ((arg1-type (inlined-arg-type arg1)))
(if (and (policy-assume-right-type)
(c-number-type-p expected-type)
(c-number-type-p arg1-type))
(produce-inline-loc (list arg1)
(list (lisp-type->rep-type arg1-type))
(list (lisp-type->rep-type expected-type))
non-consing nil t)
(produce-inline-loc (list arg1) '(:object :object) '(:object)
consing nil t))))
(define-c-inliner + (return-type &rest arguments &aux arg1 arg2)
(when (null arguments)
(return '(fixnum-value 0)))
(setf arg1 (pop arguments))
(when (null arguments)
(return (inlined-arg-loc arg1)))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_plus(#0,#1)" #\+)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))
(define-c-inliner - (return-type arg1 &rest arguments &aux arg2)
(when (null arguments)
(return (inline-arith-unop return-type arg1 "ecl_negate(#0)" "-(#0)")))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_minus(#0,#1)" #\-)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))
(define-c-inliner * (return-type &rest arguments &aux arg1 arg2)
(when (null arguments)
(return '(fixnum-value 1)))
(setf arg1 (pop arguments))
(when (null arguments)
(return (inlined-arg-loc arg1)))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_times(#0,#1)" #\*)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))
(define-c-inliner / (return-type arg1 &rest arguments &aux arg2)
(when (null arguments)
(return (inline-arith-unop return-type arg1
"ecl_divide(ecl_make_fixnum(1),(#0))" "1/(#0)")))
(loop for arg2 = (pop arguments)
for result = (inline-binop return-type arg1 arg2 "ecl_divide(#0,#1)" #\/)
do (if arguments
(setf arg1 (save-inline-loc result))
(return result))))
;;;
;;; SPECIAL FUNCTIONS
;;;
(def-type-propagator cos (fname op1-type)
(multiple-value-bind (output-type op1-type)
(ensure-nonrational-type op1-type)
(values (list op1-type) output-type)))
(copy-type-propagator 'cos '(sin tan cosh sinh tanh exp))
(def-type-propagator acos (fname op1-type)
(multiple-value-bind (output-type op1-type)
(ensure-nonrational-type op1-type)
(declare (ignore output-type))
(values (list op1-type) 'NUMBER)))
(def-type-propagator atan (fname op1-type &optional (op2-type t op2-p))
(multiple-value-bind (float-t1 t1)
(ensure-nonrational-type op1-type)
(if op2-p
(multiple-value-bind (result t1 t2)
(maximum-number-type t1 op2-type :only-real t)
(values (list t1 t2) result))
(values (list t1) float-t1))))
(def-type-propagator expt (fname base exponent)
;; Rules:
;; (expt fixnum integer) -> integer
;; (expt number-type integer) -> number-type
;; (expt number-type1 number-type2) -> (max-float number-type1 number-type2)
;;
(let ((exponent (ensure-real-type exponent)))
(values (list base exponent)
(cond ((eql exponent 'integer)
(if (subtypep base 'fixnum)
'integer
base))
((type>= '(real 0 *) base)
(let* ((exponent (ensure-nonrational-type exponent)))
(maximum-number-type exponent base)))
(t
'number)))))
(def-type-propagator abs (fname arg)
(multiple-value-bind (output arg)
(ensure-number-type arg)
(values (list arg)
(or (cdr (assoc output
'((FIXNUM . (INTEGER 0 #.MOST-POSITIVE-FIXNUM))
(INTEGER . (INTEGER 0 *))
(RATIONAL . (RATIONAL 0 *))
(SHORT-FLOAT . (SHORT-FLOAT 0 *))
(SINGLE-FLOAT . (SINGLE-FLOAT 0 *))
(DOUBLE-FLOAT . (DOUBLE-FLOAT 0 *))
(LONG-FLOAT . (LONG-FLOAT 0 *))
(REAL . (REAL 0 *))
(NUMBER . (REAL 0 *)))))
output))))
(def-type-propagator sqrt (fname arg)
(multiple-value-bind (output arg)
(ensure-nonrational-type arg)
(values (list arg)
(if (type>= '(REAL 0 *) arg) output 'NUMBER))))
(def-type-propagator isqrt (fname arg)
(if (type>= '(integer 0 #.MOST-POSITIVE-FIXNUM) arg)
(values '((integer 0 #.MOST-POSITIVE-FIXNUM))
'(integer 0 #.MOST-POSITIVE-FIXNUM))
(values '((integer 0 *)) '(integer 0 *))))

View file

@ -1,21 +1,40 @@
;;;; -*- Mode: Lisp; Syntax: Common-Lisp; indent-tabs-mode: nil; Package: C -*-
;;;; vim: set filetype=lisp tabstop=8 shiftwidth=2 expandtab:
;;;; Copyright (c) 2010, Juan Jose Garcia Ripoll
;;;;
;;;; Copyright (c) 2010, Juan Jose Garcia-Ripoll
;;;;
;;;; This program is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Library General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 2 of the License, or (at your option) any later version.
;;;;
;;;; See file '../Copyright' for full details.
;;;;
;;;; CMPOPT-BITS -- Optimize operations acting on bits
;;;; See the file 'LICENSE' for the copyright details.
;;;;
;;;; Optimizer for numerical expressions.
(in-package "COMPILER")
;;;
;;; We transform BOOLE into the individual operations, which have inliners
;;;
(define-compiler-macro boole (&whole form op-code op1 op2)
(or (and (constantp op-code *cmp-env*)
(case (ext:constant-form-value op-code *cmp-env*)
(#. boole-clr `(progn (ext:checked-value integer ,op1) (ext:checked-value integer ,op2) 0))
(#. boole-set `(progn (ext:checked-value integer ,op1) (ext:checked-value integer ,op2) -1))
(#. boole-1 `(prog1 (ext:checked-value integer ,op1) (ext:checked-value integer ,op2)))
(#. boole-2 `(progn (ext:checked-value integer ,op1) (ext:checked-value integer ,op2)))
(#. boole-c1 `(prog1 (lognot ,op1) (ext:checked-value integer ,op2)))
(#. boole-c2 `(progn (ext:checked-value integer ,op1) (lognot ,op2)))
(#. boole-and `(logand ,op1 ,op2))
(#. boole-ior `(logior ,op1 ,op2))
(#. boole-xor `(logxor ,op1 ,op2))
(#. boole-eqv `(logeqv ,op1 ,op2))
(#. boole-nand `(lognand ,op1 ,op2))
(#. boole-nor `(lognor ,op1 ,op2))
(#. boole-andc1 `(logandc1 ,op1 ,op2))
(#. boole-andc2 `(logandc2 ,op1 ,op2))
(#. boole-orc1 `(logorc1 ,op1 ,op2))
(#. boole-orc2 `(logorc2 ,op1 ,op2))))
form))
;;;
;;; LDB
;;; Look for inline expansion of LDB1 in sysfun.lsp
@ -123,9 +142,6 @@
;;;
;;; ASH
;;; Bit fiddling. It is a bit tricky because C does not allow
;;; shifts in << or >> which exceed the integer size. In those
;;; cases the compiler may do whatever it wants (and gcc does!)
;;;
(define-compiler-macro ash (&whole whole argument shift)
@ -140,39 +156,42 @@
(t
whole)))
(define-c-inliner shift (return-type argument orig-shift)
(let* ((arg-type (inlined-arg-type argument))
(arg-c-type (lisp-type->rep-type arg-type))
(return-c-type (lisp-type->rep-type return-type))
(shift (loc-immediate-value (inlined-arg-loc orig-shift))))
(if (or (not (c-integer-rep-type-p arg-c-type))
(not (c-integer-rep-type-p return-c-type)))
(produce-inline-loc (list argument orig-shift) '(:object :fixnum) '(:object)
"ecl_ash(#0,#1)" nil t)
(let* ((arg-bits (c-integer-rep-type-bits arg-c-type))
(return-bits (c-integer-rep-type-bits return-c-type))
(max-type (if (and (plusp shift)
(< arg-bits return-bits))
return-c-type
arg-c-type)))
(produce-inline-loc (list argument) (list max-type) (list return-type)
(format nil
(if (minusp shift)
"((#0) >> (~D))"
"((#0) << (~D))")
(abs shift))
nil t)))))
(defun simplify-arithmetic (operator args whole)
(if (every #'numberp args)
(apply operator args)
(let ((l (length args)))
(cond ((> l 2)
(simplify-arithmetic
operator
(list* (simplify-arithmetic operator
(list (first args) (second args))
nil)
(cddr args))
nil))
((= l 2)
(or whole (list* operator args)))
((= l 1)
(if (or (eq operator '*) (eq operator '+))
(first args)
(or whole (list* operator args))))
((eq operator '*)
1)
((eq operator '+)
0)
(t
(error 'simple-program-error
:format-error "Wrong number of arguments for operator ~a in ~a"
:format-arguments (list operator (or whole
(list* operator args)))))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; TYPE PROPAGATION
;;;
(define-compiler-macro * (&whole all &rest args)
(simplify-arithmetic '* args all))
(def-type-propagator logand (fname &rest args)
(values args
(if args
(dolist (int-type '((UNSIGNED-BYTE 8) FIXNUM) 'integer)
(when (loop for value in args
always (subtypep value int-type))
(return int-type)))
'fixnum)))
(define-compiler-macro + (&whole all &rest args)
(simplify-arithmetic '+ args all))
(define-compiler-macro / (&whole all &rest args)
(simplify-arithmetic '/ args all))
(define-compiler-macro - (&whole all &rest args)
(simplify-arithmetic '- args all))

172
src/cmp/cmpprop-num.lsp Normal file
View file

@ -0,0 +1,172 @@
;;;; -*- Mode: Lisp; Syntax: Common-Lisp; indent-tabs-mode: nil; Package: C -*-
;;;; vim: set filetype=lisp tabstop=8 shiftwidth=2 expandtab:
;;;; Copyright (c) 2010, Juan Jose Garcia Ripoll
;;;;
;;;; See the file 'LICENSE' for the copyright details.
;;;;
;;;; Type propagators for numerical expressions.
(in-package "COMPILER")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; TYPE PROPAGATION
;;;
(def-type-propagator logand (fname &rest args)
(values args
(if args
(dolist (int-type '((UNSIGNED-BYTE 8) FIXNUM) 'integer)
(when (loop for value in args
always (subtypep value int-type))
(return int-type)))
'fixnum)))
;;;
;;; The following are type propagators for arithmetic operations. Note
;;; that some of they have become binary operators.
;;;
(defun maximum-number-type (type1 type2 &key only-real integer-result)
;; Computes the output type of an operation between number types T1
;; and T2 using the rules of floating point contagion. It returns
;; the type of the result, and the types of T1 and T2, if they
;; represent known types, or NUMBER, in other cases.
(let ((t1-eq nil)
(t2-eq nil)
(t1 type1)
(t2 type2)
(output nil)
(complex-t1 nil)
(complex-t2 nil)
(default (if only-real 'REAL 'NUMBER))
(number-types #(FIXNUM INTEGER RATIONAL SINGLE-FLOAT
DOUBLE-FLOAT LONG-FLOAT FLOAT REAL)))
(when (and (consp t1) (eq (first t1) 'COMPLEX))
(setf t1 (second t1) complex-t1 t))
(when (and (consp t2) (eq (first t2) 'COMPLEX))
(setf t2 (second t2) complex-t2 t))
(when (and only-real (or complex-t1 complex-t2))
(return-from maximum-number-type (values default default default)))
(loop for i across number-types
do (when (and (null t1-eq) (type>= i t1))
(when (equalp t1 t2)
(setf t2-eq i))
(setf t1-eq i output i))
(when (and (null t2-eq) (type>= i t2))
(setf t2-eq i output i)))
(unless (and t1-eq t2-eq output)
(setf output default))
(when (and integer-result (or (eq output 'FIXNUM) (eq output 'INTEGER)))
(setf output integer-result))
(when (and (or complex-t1 complex-t2) (not (eq output 'NUMBER)))
(setf output (if (eq output 'REAL) 'COMPLEX `(COMPLEX ,output))))
(values output (if t1-eq type1 default) (if t2-eq type2 default))))
(defun ensure-number-type (general-type &key integer-result)
(maximum-number-type general-type general-type :integer-result integer-result))
(defun ensure-nonrational-type (general-type)
(maximum-number-type general-type 'single-float))
(defun ensure-real-type (general-type)
(maximum-number-type general-type 'integer :only-real t))
(defun arithmetic-propagator (op1-type others integer-result)
;; Propagates types for an associative operator (we do not care which one).
;; We collect either the types of the arguments or 'NUMBER, as a generic
;; expected type. The output type is computed using the rules of floating
;; point contagion, with the exception that an operation between two
;; integers has type INTEGER-RESULT (integer for *,-,+ and rational else)
(multiple-value-bind (result-type op1-type)
(ensure-number-type op1-type :integer-result integer-result)
(loop with arg-types = (list op1-type)
for x in others
for op2-type = x
do (progn
(multiple-value-setq (result-type op1-type op2-type)
(maximum-number-type result-type op2-type :integer-result integer-result))
(setf arg-types (cons op2-type arg-types)))
finally (return (values (nreverse arg-types) result-type)))))
(def-type-propagator * (fname op1 &rest others)
(arithmetic-propagator op1 others 'integer))
(copy-type-propagator '* '(+ -))
(def-type-propagator / (fname op1 &rest others)
(arithmetic-propagator op1 others 'rational))
;;;
;;; SPECIAL FUNCTIONS
;;;
(def-type-propagator cos (fname op1-type)
(multiple-value-bind (output-type op1-type)
(ensure-nonrational-type op1-type)
(values (list op1-type) output-type)))
(copy-type-propagator 'cos '(sin tan cosh sinh tanh exp))
(def-type-propagator acos (fname op1-type)
(multiple-value-bind (output-type op1-type)
(ensure-nonrational-type op1-type)
(declare (ignore output-type))
(values (list op1-type) 'NUMBER)))
(def-type-propagator atan (fname op1-type &optional (op2-type t op2-p))
(multiple-value-bind (float-t1 t1)
(ensure-nonrational-type op1-type)
(if op2-p
(multiple-value-bind (result t1 t2)
(maximum-number-type t1 op2-type :only-real t)
(values (list t1 t2) result))
(values (list t1) float-t1))))
(def-type-propagator expt (fname base exponent)
;; Rules:
;; (expt fixnum integer) -> integer
;; (expt number-type integer) -> number-type
;; (expt number-type1 number-type2) -> (max-float number-type1 number-type2)
;;
(let ((exponent (ensure-real-type exponent)))
(values (list base exponent)
(cond ((eql exponent 'integer)
(if (subtypep base 'fixnum)
'integer
base))
((type>= '(real 0 *) base)
(let* ((exponent (ensure-nonrational-type exponent)))
(maximum-number-type exponent base)))
(t
'number)))))
(def-type-propagator abs (fname arg)
(multiple-value-bind (output arg)
(ensure-number-type arg)
(values (list arg)
(or (cdr (assoc output
'((FIXNUM . (INTEGER 0 #.MOST-POSITIVE-FIXNUM))
(INTEGER . (INTEGER 0 *))
(RATIONAL . (RATIONAL 0 *))
(SHORT-FLOAT . (SHORT-FLOAT 0 *))
(SINGLE-FLOAT . (SINGLE-FLOAT 0 *))
(DOUBLE-FLOAT . (DOUBLE-FLOAT 0 *))
(LONG-FLOAT . (LONG-FLOAT 0 *))
(REAL . (REAL 0 *))
(NUMBER . (REAL 0 *)))))
output))))
(def-type-propagator sqrt (fname arg)
(multiple-value-bind (output arg)
(ensure-nonrational-type arg)
(values (list arg)
(if (type>= '(REAL 0 *) arg) output 'NUMBER))))
(def-type-propagator isqrt (fname arg)
(if (type>= '(integer 0 #.MOST-POSITIVE-FIXNUM) arg)
(values '((integer 0 #.MOST-POSITIVE-FIXNUM))
'(integer 0 #.MOST-POSITIVE-FIXNUM))
(values '((integer 0 *)) '(integer 0 *))))

View file

@ -44,11 +44,13 @@
"src:cmp;cmppass1-ffi.lsp"
;; Type propagation pass
"src:cmp;cmpprop.lsp"
"src:cmp;cmpprop-num.lsp"
;; C/C++ backend
;; Abstract C machine
"src:cmp;cmpbackend-cxx;cmpc-mach.lsp"
"src:cmp;cmpbackend-cxx;cmpc-wt.lsp"
"src:cmp;cmpbackend-cxx;cmpc-inliner.lsp"
"src:cmp;cmpbackend-cxx;cmpc-opt-num.lsp"
;; Code generation pass
"src:cmp;cmpbackend-cxx;cmppass2-data.lsp"
"src:cmp;cmpbackend-cxx;cmppass2-top.lsp"
@ -66,10 +68,9 @@
;; Optimizations
"src:cmp;cmpct.lsp"
"src:cmp;cmpmap.lsp"
"src:cmp;cmpnum.lsp"
"src:cmp;cmpname.lsp"
"src:cmp;cmpopt.lsp"
"src:cmp;cmpopt-bits.lsp"
"src:cmp;cmpopt-num.lsp"
"src:cmp;cmpopt-clos.lsp"
"src:cmp;cmpopt-constant.lsp"
"src:cmp;cmpopt-cons.lsp"