Initial prototype

This commit is contained in:
Roger Maitland 2022-07-01 11:27:14 -04:00
commit ccd48612c7
2 changed files with 780 additions and 0 deletions

741
cq3.py Normal file
View file

@ -0,0 +1,741 @@
import builtins
from math import pi, sin
from typing import Union, Iterable, Sequence, Callable
from enum import Enum, auto
import cadquery as cq
from cadquery.hull import find_hull
from cadquery import (
Edge,
Face,
Wire,
Vector,
Shape,
Location,
Vertex,
Compound,
Solid,
Plane,
)
from cadquery.occ_impl.shapes import VectorLike, Real
import cq_warehouse.extensions
z_axis = (Vector(0, 0, 0), Vector(0, 0, 1))
def __matmul__custom(e: Union[Edge, Wire], p: float):
return e.positionAt(p)
def __mod__custom(e: Union[Edge, Wire], p: float):
return e.tangentAt(p)
Edge.__matmul__ = __matmul__custom
Edge.__mod__ = __mod__custom
line = Edge.makeLine(Vector(0, 0, 0), Vector(10, 0, 0))
# print(f"position of line at 1/2: {line @ 0.5=}")
# print(f"tangent of line at 1/2: {line % 0.5=}")
def by_x(obj: Shape) -> float:
return obj.Center().x
def _by_x_shape(self) -> float:
return self.Center().x
Shape.by_x = _by_x_shape
def by_y(obj: Shape) -> float:
return obj.Center().y
def _by_y_shape(self) -> float:
return self.Center().y
Shape.by_y = _by_y_shape
def by_z(obj: Shape) -> float:
return obj.Center().z
def _by_z_shape(self) -> float:
return self.Center().z
Shape.by_z = _by_z_shape
def by_length(obj: Union[Edge, Wire]) -> float:
return obj.Length()
def _by_length_edge_or_wire(self) -> float:
return self.Length()
Edge.by_length = _by_length_edge_or_wire
Wire.by_length = _by_length_edge_or_wire
def by_radius(obj: Union[Edge, Wire]) -> float:
return obj.radius()
def _by_radius_edge_or_wire(self) -> float:
return self.radius()
Edge.by_radius = _by_radius_edge_or_wire
Wire.by_radius = _by_radius_edge_or_wire
def by_area(obj: cq.Shape) -> float:
return obj.Area()
def _by_area_shape(self) -> float:
return self.Area()
Shape.by_area = _by_area_shape
class SortBy(Enum):
NONE = auto()
X = auto()
Y = auto()
Z = auto()
LENGTH = auto()
RADIUS = auto()
AREA = auto()
VOLUME = auto()
DISTANCE = auto()
class Mode(Enum):
"""Combination Mode"""
ADDITION = auto()
SUBTRACTION = auto()
INTERSECTION = auto()
CONSTRUCTION = auto()
class BuildAssembly:
def add(self):
pass
def _null(self):
return self
Solid.null = _null
Compound.null = _null
class Until(Enum):
NEXT = auto()
LAST = auto()
class CqObject(Enum):
EDGE = auto()
FACE = auto()
VERTEX = auto()
class Build3D:
@property
def workplane_count(self) -> int:
return len(self.workplanes)
@property
def pending_face_count(self) -> int:
return len(self.pending_faces)
def __init__(
self,
parent: BuildAssembly = None,
mode: Mode = Mode.ADDITION,
workplane: Plane = Plane.named("XY"),
):
self.parent = parent
self.working_solid: Solid = None
self.workplanes: list[Plane] = [workplane]
self.pending_faces: dict[int : list[Face]] = {0: []}
self.pending_edges: dict[int : list[Edge]] = {0: []}
self.locations: dict[int : list[Location]] = {0: []}
self.last_operation: dict[CqObject : list[Shape]] = {}
# self.last_operation_edges: list[Edge] = []
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
pass
def push_locations(self, *pts: Union[VectorLike, Location]):
new_locations = [
Location(Vector(pt)) if not isinstance(pt, Location) else pt for pt in pts
]
for i in range(len(self.workplanes)):
self.locations[i].extend(new_locations)
print(f"{len(self.locations[i])=}")
return new_locations[0] if len(new_locations) == 1 else new_locations
def add(self, obj: Union[Edge, Face], mode: Mode = Mode.ADDITION):
print(f"Add before: {self.locations=}")
print(f"Add before: {self.pending_faces=}")
for i, workplane in enumerate(self.workplanes):
if not self.locations:
self.locations[i] = Location(Vector())
for loc in self.locations[i]:
# located_loc = workplane.fromLocalCoords(loc)
print(f"{loc=}")
localized_location = loc * Location(workplane)
print(f"{localized_location=}")
# if i in self.workplanes:
if isinstance(obj, Face):
self.pending_faces[i].append(
# workplane.fromLocalCoords(obj.located(localized_location))
obj.located(localized_location)
)
else:
self.pending_edges[i].append(
# workplane.fromLocalCoords(obj.located(localized_location))
obj.located(localized_location)
)
# else:
# if isinstance(obj, Face):
# self.pending_faces[i] = [
# # workplane.fromLocalCoords(obj.located(localized_location))
# obj.located(localized_location)
# ]
# else:
# self.pending_edges[i] = [
# # workplane.fromLocalCoords(obj.located(localized_location))
# obj.located(localized_location)
# ]
print(f"Add after: {self.pending_faces=}")
def workplane(self, workplane: Plane = Plane.named("XY"), replace=True):
if replace:
self.workplanes = [workplane]
else:
self.workplanes.append(workplane)
self.locations[len(self.workplanes) - 1] = [Location()]
return workplane
def faces_to_workplanes(self, *faces: Sequence[Face], replace=False):
new_planes = []
for face in faces:
new_plane = Plane(origin=face.Center(), normal=face.normalAt(face.Center()))
new_planes.append(new_plane)
self.workplane(new_plane, replace)
return new_planes[0] if len(new_planes) == 1 else new_planes
def edges(self, sort_by: SortBy = SortBy.NONE, reverse: bool = False) -> list[Edge]:
if sort_by == SortBy.NONE:
edges = self.working_solid.Edges()
elif sort_by == SortBy.X:
edges = sorted(
self.working_solid.Edges(),
key=lambda obj: obj.Center().x,
reverse=reverse,
)
elif sort_by == SortBy.Y:
edges = sorted(
self.working_solid.Edges(),
key=lambda obj: obj.Center().y,
reverse=reverse,
)
elif sort_by == SortBy.Z:
edges = sorted(
self.working_solid.Edges(),
key=lambda obj: obj.Center().z,
reverse=reverse,
)
elif sort_by == SortBy.LENGTH:
edges = sorted(
self.working_solid.Edges(),
key=lambda obj: obj.Length(),
reverse=reverse,
)
elif sort_by == SortBy.RADIUS:
edges = sorted(
self.working_solid.Edges(),
key=lambda obj: obj.radius(),
reverse=reverse,
)
elif sort_by == SortBy.DISTANCE:
edges = sorted(
self.working_solid.Edges(),
key=lambda obj: obj.Center().Length,
reverse=reverse,
)
else:
raise ValueError(f"Unable to sort edges by {sort_by}")
return edges
def faces(self, sort_by: SortBy = SortBy.NONE, reverse: bool = False) -> list[Face]:
if sort_by == SortBy.NONE:
faces = self.working_solid.Faces()
elif sort_by == SortBy.X:
faces = sorted(
self.working_solid.Faces(),
key=lambda obj: obj.Center().x,
reverse=reverse,
)
elif sort_by == SortBy.Y:
faces = sorted(
self.working_solid.Faces(),
key=lambda obj: obj.Center().y,
reverse=reverse,
)
elif sort_by == SortBy.Z:
faces = sorted(
self.working_solid.Faces(),
key=lambda obj: obj.Center().z,
reverse=reverse,
)
elif sort_by == SortBy.AREA:
faces = sorted(
self.working_solid.Faces(), key=lambda obj: obj.Area(), reverse=reverse
)
elif sort_by == SortBy.DISTANCE:
faces = sorted(
self.working_solid.Faces(),
key=lambda obj: obj.Center().Length,
reverse=reverse,
)
else:
raise ValueError(f"Unable to sort edges by {sort_by}")
return faces
def vertices(
self, sort_by: SortBy = SortBy.NONE, reverse: bool = False
) -> list[Vertex]:
if sort_by == SortBy.NONE:
vertices = self.working_solid.Vertices()
elif sort_by == SortBy.X:
vertices = sorted(
self.working_solid.Vertices(),
key=lambda obj: obj.Center().x,
reverse=reverse,
)
elif sort_by == SortBy.Y:
vertices = sorted(
self.working_solid.Vertices(),
key=lambda obj: obj.Center().y,
reverse=reverse,
)
elif sort_by == SortBy.Z:
vertices = sorted(
self.working_solid.Vertices(),
key=lambda obj: obj.Center().z,
reverse=reverse,
)
elif sort_by == SortBy.DISTANCE:
vertices = sorted(
self.working_solid.Vertices(),
key=lambda obj: obj.Center().Length,
reverse=reverse,
)
else:
raise ValueError(f"Unable to sort edges by {sort_by}")
return vertices
def place_solids(
self,
new_solids: list[Solid, Compound],
mode: Mode = Mode.ADDITION,
clean: bool = True,
):
Solid.clean_op = Solid.clean if clean else Solid.null
Compound.clean_op = Compound.clean if clean else Compound.null
before_vertices = (
set() if self.working_solid is None else set(self.working_solid.Vertices())
)
before_edges = (
set() if self.working_solid is None else set(self.working_solid.Edges())
)
before_faces = (
set() if self.working_solid is None else set(self.working_solid.Faces())
)
if mode == Mode.ADDITION:
if self.working_solid is None:
if len(new_solids) == 1:
self.working_solid = new_solids[0]
else:
self.working_solid = new_solids.pop().fuse(*new_solids)
else:
self.working_solid = self.working_solid.fuse(*new_solids).clean_op()
elif mode == Mode.SUBTRACTION:
if self.working_solid is None:
raise ValueError("Nothing to subtract from")
self.working_solid = self.working_solid.cut(*new_solids).clean_op()
elif mode == Mode.INTERSECTION:
if self.working_solid is None:
raise ValueError("Nothing to intersect with")
self.working_solid = self.working_solid.intersect(*new_solids).clean_op()
self.last_operation[CqObject.VERTEX] = list(
set(self.working_solid.Vertices()) - before_vertices
)
self.last_operation[CqObject.EDGE] = list(
set(self.working_solid.Edges()) - before_edges
)
self.last_operation[CqObject.FACE] = list(
set(self.working_solid.Faces()) - before_faces
)
def extrude(
self,
until: Union[float, Until, Face],
both: bool = False,
taper: float = None,
mode: Mode = Mode.ADDITION,
clean: bool = True,
):
new_solids: list[Solid] = []
for plane_index, faces in self.pending_faces.items():
for face in faces:
new_solids.append(
Solid.extrudeLinear(
face, self.workplanes[plane_index].zDir * until, 0
)
)
if both:
new_solids.append(
Solid.extrudeLinear(
face,
self.workplanes[plane_index].zDir * until * -1.0,
0,
)
)
self.place_solids(new_solids, mode, clean)
return new_solids[0] if len(new_solids) == 1 else new_solids
def revolve(
self,
angle_degrees: float = 360.0,
axis_start: VectorLike = None,
axis_end: VectorLike = None,
mode: Mode = Mode.ADDITION,
clean: bool = True,
):
# Make sure we account for users specifying angles larger than 360 degrees, and
# for OCCT not assuming that a 0 degree revolve means a 360 degree revolve
angle = angle_degrees % 360.0
angle = 360.0 if angle == 0 else angle
new_solids = []
for i, workplane in enumerate(self.workplanes):
axis = []
if axis_start is None:
axis.append(workplane.fromLocalCoords(Vector(0, 0, 0)))
else:
axis.append(workplane.fromLocalCoords(Vector(axis_start)))
if axis_end is None:
axis.append(workplane.fromLocalCoords(Vector(0, 1, 0)))
else:
axis.append(workplane.fromLocalCoords(Vector(axis_end)))
print(f"Revolve: {axis=}")
for face in self.pending_faces[i]:
print(f"{type(face)=}")
print(f"{face.Area()=}")
print(f"{face.Center()=}")
print(f"{face.normalAt(face.Center())=}")
new_solids.append(Solid.revolve(face, angle, *axis))
self.place_solids(new_solids, mode, clean)
return new_solids[0] if len(new_solids) == 1 else new_solids
def loft(self, ruled: bool = False, mode: Mode = Mode.ADDITION, clean: bool = True):
new_solids = []
for i in range(len(self.workplanes)):
new_wires = []
for face in self.faces[i]:
new_wires.append(face.outerWire())
print(f"{len(new_wires)=}")
new_solids.append(Solid.makeLoft(new_wires, ruled))
self.place_solids(new_solids, mode, clean)
return new_solids[0] if len(new_solids) == 1 else new_solids
def fillet(self, *edges: Sequence[Edge], radius: float):
self.working_solid = self.working_solid.fillet(radius, [e for e in edges])
class Build2D:
def __init__(self, parent: Build3D = None, mode: Mode = Mode.ADDITION):
self.working_surface = Compound.makeCompound(())
self.pending_edges: list[Edge] = []
# self.tags: dict[str, Face] = {}
self.parent = parent
self.locations: list[Location] = []
self.mode = mode
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
print(f"Exit: Area of generated Face: {self.working_surface.Area()}")
if self.parent is not None:
self.parent.add(self.working_surface, self.mode)
def add(self, f: Face, mode: Mode = Mode.ADDITION):
new_faces = self.place_face(f, mode)
return new_faces if len(new_faces) > 1 else new_faces[0]
def push_locations(self, *pts: Sequence[Union[VectorLike, Location]]):
new_locations = [
Location(Vector(pt)) if not isinstance(pt, Location) else pt for pt in pts
]
self.locations.extend(new_locations)
return new_locations
def assemble_edges(self, mode: Mode = Mode.ADDITION, tag: str = None) -> Face:
pending_face = Face.makeFromWires(Wire.assembleEdges(self.pending_edges))
self.add(pending_face, mode, tag)
self.pending_edges = []
# print(f"Area of generated Face: {pending_face.Area()}")
return pending_face
def hull_edges(self, mode: Mode = Mode.ADDITION, tag: str = None) -> Face:
pending_face = find_hull(self.pending_edges)
self.add(pending_face, mode, tag)
self.pending_edges = []
# print(f"Area of generated Face: {pending_face.Area()}")
return pending_face
def rect(
self,
width: float,
height: float,
angle: float = 0,
mode: Mode = Mode.ADDITION,
) -> Face:
"""
Construct a rectangular face.
"""
new_faces = self.place_face(
Face.makePlane(height, width).rotate(*z_axis, angle), mode
)
return new_faces if len(new_faces) > 1 else new_faces[0]
def circle(self, radius: float, mode: Mode = Mode.ADDITION) -> Face:
"""
Construct a circular face.
"""
new_faces = self.place_face(
Face.makeFromWires(Wire.makeCircle(radius, *z_axis)), mode
)
return new_faces if len(new_faces) > 1 else new_faces[0]
def place_face(self, face: Face, mode: Mode = Mode.ADDITION):
if not self.locations:
self.locations = [Location(Vector())]
new_faces = [face.located(location) for location in self.locations]
if mode == Mode.ADDITION:
self.working_surface = self.working_surface.fuse(*new_faces).clean()
elif mode == Mode.SUBTRACTION:
self.working_surface = self.working_surface.cut(*new_faces).clean()
elif mode == Mode.INTERSECTION:
self.working_surface = self.working_surface.intersect(*new_faces).clean()
elif mode == Mode.CONSTRUCTION:
pass
else:
raise ValueError(f"Invalid mode: {mode}")
self.locations = []
return new_faces
class Build1D:
def __init__(self, parent: Build2D = None, mode: Mode = Mode.ADDITION):
self.edge_list = []
self.tags: dict[str, Edge] = {}
self.parent = parent
self.mode = mode
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
pending_face = Face.makeFromWires(Wire.assembleEdges(self.edge_list))
print(f"Exit: Area of generated Face: {pending_face.Area()}")
# print(self.tags)
self.parent.add(pending_face, self.mode)
def edges(self) -> list[Edge]:
return self.edge_list
def vertices(self) -> list[Vertex]:
vertex_list = []
for e in self.edge_list:
vertex_list.extend(e.Vertices())
return list(set(vertex_list))
def polyline(
self,
*pts: VectorLike,
mode: Mode = Mode.ADDITION,
tag: str = None,
):
if len(pts) < 2:
raise ValueError("polyline requires two or more pts")
lines_pts = [Vector(p) for p in pts]
new_edges = [
Edge.makeLine(lines_pts[i], lines_pts[i + 1])
for i in range(len(lines_pts) - 1)
]
for e in new_edges:
e.forConstruction = mode == Mode.CONSTRUCTION
self.edge_list.extend(new_edges)
return_value = (
new_edges[0] if len(new_edges) == 1 else Wire.assembleEdges(new_edges)
)
if tag:
if len(new_edges) > 1:
for i, edge in enumerate(new_edges):
self.tags[f"{tag}-{i}"] = edge
else:
self.tags[tag] = new_edges[0]
return return_value
# with Build2D() as f:
# # Start with a central circle with a square quarter
# c6 = f.circle(6)
# print(f"{type(c6)=}, {c6.Center()=}")
# f.push((3, 3))
# r6 = f.rect(6, 6)
# print(f"{type(r6)=}, {r6.Center()=}")
# # Create some locations for the cutouts
# polar_locations = [
# Location(Vector(3, 0, 0).rotateZ(a), Vector(0, 0, 1), a)
# for a in range(0, 360, 45)
# ]
# f.push(*polar_locations)
# # Cutout a set of diamonds
# with Build1D(parent=f, mode=Mode.SUBTRACTION) as e:
# # Instantiate a simple line
# l = e.polyline((0, 0), (1, 1))
# print(f"Type of line: {type(l)}")
# # Instantiate a polyline
# m = e.polyline(l.endPoint(), (2, 0), (1, -1))
# print(f"Type of polyline: {type(m)}")
# # Create another line but don't assign a global to it
# e.polyline(m.endPoint(), l.startPoint())
# # Extract all of the vertices - two for each Edge
# all_vertices = e.vertices()
# print(f"Type of vertices: {type(all_vertices)}")
# print(f"Total number of vertices: {len(all_vertices)}")
# # Sort these vertices by Y value
# corners_sorted_by_Y = sorted(all_vertices, key=lambda v: v.Y)
# # Filter the sorted value to extract just those on the X axis
# side_corners = list(filter(lambda v: abs(v.Y) < 1e-5, corners_sorted_by_Y))
# print(f"Number of vertices after filter: {len(side_corners)}")
# print("Corner vertices at X axis:")
# for v in side_corners:
# print(v.toTuple())
# with Build2D() as f2:
# with Build1D(parent=f2) as c2:
# pts = [Vector(10, 0, 0).rotateZ(a) for a in range(0, 360, 60)]
# c2.polyline(*pts)
# print(f"{type(c2.face)=}")
# with Build3D() as s1:
# with Build2D(s1) as f1:
# f1.rect(10, 10)
# box = s1.extrude(10)
# s1.faces_to_workplanes(*box.Faces())
# with Build2D(s1) as f2:
# f2.circle(3)
# s1.extrude(-1, mode=Mode.SUBTRACTION)
# # edges_by_z = sorted(s1.edges(), key=by_z, reverse=True)[0:1]
# # edges_by_z = s1.edges(sort_by=SortBy.Z, reverse=True)[0:1]
# edges_by_z = s1.edges(SortBy.Z, reverse=True)[0:1]
# # print(f"{edges_by_z}")
# # top_circle = sorted(s1.last_operation_edges, key=by_z, reverse=True)[0]
# # top_circle = filter(lambda f: abs(f.by_z() - 5) < 1e-5, s1.last_operation_edges)
# # s1.fillet(*s1.last_operation[CqObject.EDGE], radius=0.2)
# s1.fillet(*edges_by_z, radius=0.2)
# print(s1.solid.Volume())
# with Build2D() as f1:
# f1.push_locations((-5, -5), (-5, 5), (5, 5), (5, -5))
# # f1.rect(1, 1)
# f1.circle(1)
# faces = [f for list in s1.faces.values() for f in list]
# with Build3D() as s2:
# with Build2D(s2) as f1:
# f1.push_locations((4, 3))
# rect = f1.rect(6, 6)
# revolve = s2.pending_faces
# s2.revolve()
with Build3D() as s2:
# s2.push_locations((-5, -5), (-5, 5), (5, 5), (5, -5))
with Build2D(s2) as f1:
f1.circle(1)
# with Build3D() as s3:
# for i in range(21):
# r = 10 * sin(i * pi / 20) + 5
# s3.push((0, 0, i))
# with Build2D(s3) as f1:
# f1.circle(r)
# print(f"{len(s3.faces[0])=}")
# s3.loft()
if "show_object" in locals():
show_object(s2.pending_faces[0])
# show_object(rect, name="rect")
# show_object(f1.working_surface, name="working_surface")
# show_object(revolve, name="revolve")
# show_object(f1.face_list)
# show_object(s1.working_solid, name="s1")
# show_object(s1.last_operation_edges, name="last edges")
# show_object(s2.solid, name="s2")
# show_object(f1.faces, name="f1")
# show_object(rface, name="rface")
# show_object(faces, name="circles")
# show_object(bumps, name="bumps")
# show_object(f.faces, name="f")
# show_object(f2.faces, name="f2")

39
rtree.py Normal file
View file

@ -0,0 +1,39 @@
def get_bb_coords(shape: Shape) -> Tuple[float, float, float, float, float, float]:
bb = shape.BoundingBox()
return (bb.xmin, bb.ymin, bb.zmin, bb.xmax, bb.ymax, bb.zmax)
def build_tree(shapes: Iterable[Shape]):
import rtree.index
p = rtree.index.Property(dimension=3)
t = rtree.index.RtreeContainer(properties=p)
for shape in shapes:
t.insert(shape, get_bb_coords(shape))
return t
def face_outside(f: Face, ff: Face) -> bool:
"""f exists outside of ff"""
# TODO: shortcut True if bbox intersection is 1d and f.Area() > 0
return f.cut(ff).Area() > 0
def new_faces(self: T) -> T:
"""Find faces not present in parent"""
old_faces = self.parent.findSolid().Faces()
old_set = set(old_faces)
new = [f for f in self.findSolid().Faces() if f not in old_set]
new_tree = build_tree(new)
old_tree = build_tree(
f for f in old_faces if any(new_tree.intersection(get_bb_coords(f)))
)
new = [
f
for f in new
if all(face_outside(f, ff) for ff in old_tree.intersection(get_bb_coords(f)))
]
return self.newObject(new)
cq.Workplane.new_faces = new_faces