mirror of
https://github.com/tiddly-gittly/TidGi-Desktop.git
synced 2025-12-05 18:20:39 -08:00
rename: handler -> agent framework; plugin -> tool lint refactor: more rename further rename
311 lines
14 KiB
TypeScript
311 lines
14 KiB
TypeScript
import { container } from '@services/container';
|
|
import type { IExternalAPIService } from '@services/externalAPI/interface';
|
|
import { logger } from '@services/libs/log';
|
|
import serviceIdentifier from '@services/serviceIdentifier';
|
|
import { merge } from 'lodash';
|
|
import type { AgentInstanceLatestStatus, AgentInstanceMessage, IAgentInstanceService } from '../interface';
|
|
import { AgentFrameworkConfig, AgentPromptDescription, AiAPIConfig } from '../promptConcat/promptConcatSchema';
|
|
import type { IPromptConcatTool } from '../promptConcat/promptConcatSchema/plugin';
|
|
import { responseConcat } from '../promptConcat/responseConcat';
|
|
import { getFinalPromptResult } from '../promptConcat/utilities';
|
|
import { createHooksWithTools } from '../tools';
|
|
import { YieldNextRoundTarget } from '../tools/types';
|
|
import { canceled, completed, error, working } from './utilities/statusUtilities';
|
|
import { AgentFrameworkContext } from './utilities/type';
|
|
|
|
/**
|
|
* Main conversation orchestrator for AI agents
|
|
*
|
|
* Responsibilities:
|
|
* - Control flow between human users and AI models
|
|
* - Coordinate with plugins for prompt processing and response handling
|
|
* - Delegate prompt concatenation to plugin system
|
|
* - Delegate AI API calls to externalAPIService
|
|
* - Manage message history and conversation state
|
|
* - Handle tool execution coordination
|
|
* - Process yieldNextRoundTo actions from response plugins
|
|
*
|
|
* @param context - Agent handling context containing configuration and message history
|
|
*/
|
|
export async function* basicPromptConcatHandler(context: AgentFrameworkContext) {
|
|
// Initialize variables for request tracking
|
|
let currentRequestId: string | undefined;
|
|
const lastUserMessage: AgentInstanceMessage | undefined = context.agent.messages[context.agent.messages.length - 1];
|
|
// Create and register handler hooks based on framework config
|
|
const { hooks: agentFrameworkHooks, toolConfigs } = await createHooksWithTools(context.agentDef.agentFrameworkConfig || {});
|
|
|
|
// Log the start of handler execution with context information
|
|
logger.debug('Starting prompt handler execution', {
|
|
method: 'basicPromptConcatHandler',
|
|
agentId: context.agent.id,
|
|
defId: context.agentDef.id,
|
|
agentFrameworkId: context.agentDef.agentFrameworkID,
|
|
messageCount: context.agent.messages.length,
|
|
});
|
|
// Check if there's a new user message to process - trigger user message received hook
|
|
// This is determined by checking if the last message is from user and hasn't been processed yet
|
|
const isNewUserMessage = !!lastUserMessage && lastUserMessage.role === 'user' && !lastUserMessage.metadata?.processed;
|
|
|
|
if (isNewUserMessage) {
|
|
// Trigger user message received hook
|
|
await agentFrameworkHooks.userMessageReceived.promise({
|
|
agentFrameworkContext: context,
|
|
content: {
|
|
text: lastUserMessage.content,
|
|
file: lastUserMessage.metadata?.file as File | undefined,
|
|
},
|
|
messageId: lastUserMessage.id,
|
|
timestamp: lastUserMessage.modified || new Date(),
|
|
});
|
|
|
|
// Mark user message as processed
|
|
lastUserMessage.metadata = { ...lastUserMessage.metadata, processed: true };
|
|
|
|
// Trigger agent status change to working
|
|
await agentFrameworkHooks.agentStatusChanged.promise({
|
|
agentFrameworkContext: context,
|
|
status: {
|
|
state: 'working',
|
|
modified: new Date(),
|
|
},
|
|
});
|
|
}
|
|
|
|
if (!lastUserMessage || !lastUserMessage.content || lastUserMessage.role !== 'user') {
|
|
logger.warn('No valid user message found', { method: 'basicPromptConcatHandler' });
|
|
yield completed('No user message found to process.', context);
|
|
return;
|
|
}
|
|
|
|
// Ensure AI configuration exists
|
|
const externalAPIService = container.get<IExternalAPIService>(serviceIdentifier.ExternalAPI);
|
|
const aiApiConfig: AiAPIConfig = merge(
|
|
{},
|
|
await externalAPIService.getAIConfig(),
|
|
context.agentDef.aiApiConfig,
|
|
context.agent.aiApiConfig,
|
|
);
|
|
|
|
// Check if cancelled by user
|
|
if (context.isCancelled()) {
|
|
yield canceled();
|
|
return;
|
|
}
|
|
|
|
// Process prompts using common handler function
|
|
try {
|
|
const agentFrameworkConfig = context.agentDef.agentFrameworkConfig as AgentFrameworkConfig;
|
|
const agentPromptDescription: AgentPromptDescription = {
|
|
id: context.agentDef.id,
|
|
api: aiApiConfig.api,
|
|
modelParameters: aiApiConfig.modelParameters,
|
|
agentFrameworkConfig,
|
|
};
|
|
|
|
const agentInstanceService = container.get<IAgentInstanceService>(serviceIdentifier.AgentInstance);
|
|
// Generate AI response
|
|
// Function to process a single LLM call with retry support
|
|
async function* processLLMCall(): AsyncGenerator<AgentInstanceLatestStatus> {
|
|
try {
|
|
// Delegate prompt concatenation to plugin system
|
|
// Re-generate prompts to trigger middleware (including retrievalAugmentedGenerationHandler)
|
|
// Get the final result from the stream using utility function
|
|
const concatStream = agentInstanceService.concatPrompt(agentPromptDescription, context.agent.messages);
|
|
const { flatPrompts } = await getFinalPromptResult(concatStream);
|
|
|
|
logger.debug('Starting AI generation', {
|
|
method: 'processLLMCall',
|
|
modelName: aiApiConfig.api.model,
|
|
flatPrompts,
|
|
messages: context.agent.messages,
|
|
});
|
|
|
|
// Delegate AI API calls to externalAPIService
|
|
for await (const response of externalAPIService.generateFromAI(flatPrompts, aiApiConfig, { agentInstanceId: context.agent.id, awaitLogs: true })) {
|
|
if (!currentRequestId && response.requestId) {
|
|
currentRequestId = response.requestId;
|
|
}
|
|
|
|
if (context.isCancelled()) {
|
|
logger.info('Request cancelled by user', {
|
|
method: 'processLLMCall',
|
|
requestId: currentRequestId,
|
|
});
|
|
|
|
if (currentRequestId) {
|
|
await externalAPIService.cancelAIRequest(currentRequestId);
|
|
yield canceled();
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (response.status === 'update' || response.status === 'done') {
|
|
const state = response.status === 'done' ? 'completed' : 'working';
|
|
|
|
// Delegate response processing to handler hooks
|
|
if (response.status === 'update') {
|
|
// For responseUpdate, we'll skip plugin-specific config for now
|
|
// since it's called frequently during streaming
|
|
await agentFrameworkHooks.responseUpdate.promise({
|
|
agentFrameworkContext: context,
|
|
response,
|
|
requestId: currentRequestId,
|
|
isFinal: false,
|
|
toolConfig: {} as IPromptConcatTool, // Empty config for streaming updates
|
|
});
|
|
}
|
|
|
|
if (state === 'completed') {
|
|
logger.debug('AI generation completed', {
|
|
method: 'processLLMCall',
|
|
requestId: currentRequestId,
|
|
contentLength: response.content.length || 0,
|
|
});
|
|
|
|
// Delegate final response processing to handler hooks
|
|
const responseCompleteContext = {
|
|
agentFrameworkContext: context,
|
|
response,
|
|
requestId: currentRequestId,
|
|
isFinal: true,
|
|
toolConfig: (toolConfigs.length > 0 ? toolConfigs[0] : {}) as IPromptConcatTool, // First config for compatibility
|
|
agentFrameworkConfig: context.agentDef.agentFrameworkConfig, // Pass complete config for tool access
|
|
actions: undefined as { yieldNextRoundTo?: 'self' | 'human'; newUserMessage?: string } | undefined,
|
|
};
|
|
|
|
await agentFrameworkHooks.responseComplete.promise(responseCompleteContext);
|
|
|
|
// Check if responseComplete hooks set yieldNextRoundTo
|
|
let yieldNextRoundFromHooks: YieldNextRoundTarget | undefined;
|
|
if (responseCompleteContext.actions?.yieldNextRoundTo) {
|
|
yieldNextRoundFromHooks = responseCompleteContext.actions.yieldNextRoundTo;
|
|
logger.debug('Response complete hooks triggered yield next round', {
|
|
method: 'processLLMCall',
|
|
yieldNextRoundTo: yieldNextRoundFromHooks,
|
|
});
|
|
}
|
|
|
|
// Delegate response processing to plugin system
|
|
// Plugins can set yieldNextRoundTo actions to control conversation flow
|
|
const processedResult = await responseConcat(agentPromptDescription, response.content, context, context.agent.messages);
|
|
|
|
// Handle control flow based on plugin decisions or responseComplete hooks
|
|
const shouldContinue = processedResult.yieldNextRoundTo === 'self' || yieldNextRoundFromHooks === 'self';
|
|
if (shouldContinue) {
|
|
// Control transfer: Continue with AI (yieldNextRoundTo: 'self')
|
|
logger.debug('Response processing triggered new LLM call', {
|
|
method: 'processLLMCall',
|
|
fromResponseConcat: processedResult.yieldNextRoundTo,
|
|
fromResponseCompleteHooks: yieldNextRoundFromHooks,
|
|
});
|
|
|
|
// Reset request ID for new call
|
|
currentRequestId = undefined;
|
|
// Yield current response as working state
|
|
yield working(processedResult.processedResponse, context, currentRequestId);
|
|
|
|
// Continue with new round
|
|
// The necessary messages should already be added by plugins
|
|
logger.debug('Continuing with next round', {
|
|
method: 'basicPromptConcatHandler',
|
|
agentId: context.agent.id,
|
|
messageCount: context.agent.messages.length,
|
|
});
|
|
|
|
yield* processLLMCall();
|
|
return;
|
|
}
|
|
|
|
// Control transfer: Return to human (yieldNextRoundTo: 'human' or default)
|
|
yield completed(processedResult.processedResponse, context, currentRequestId);
|
|
} else {
|
|
yield working(response.content, context, currentRequestId);
|
|
}
|
|
} else if (response.status === 'error') {
|
|
// Create message with error details and emit as role='error'
|
|
const errorText = response.errorDetail?.message || 'Unknown error';
|
|
const errorMessage = `Error: ${errorText}`;
|
|
logger.error('Error in AI response', {
|
|
errorMessage,
|
|
errorDetail: response.errorDetail,
|
|
requestId: currentRequestId,
|
|
});
|
|
|
|
// Before persisting the error, ensure any pending tool result messages are persisted
|
|
try {
|
|
const agentInstanceService = container.get<IAgentInstanceService>(serviceIdentifier.AgentInstance);
|
|
const pendingToolMessages = context.agent.messages.filter(m => m.metadata?.isToolResult && !m.metadata?.isPersisted);
|
|
for (const tm of pendingToolMessages) {
|
|
try {
|
|
await agentInstanceService.saveUserMessage(tm);
|
|
(tm).metadata = { ...(tm).metadata, isPersisted: true };
|
|
} catch (error1) {
|
|
logger.warn('Failed to persist pending tool result before error', {
|
|
error: error1,
|
|
messageId: tm.id,
|
|
});
|
|
}
|
|
}
|
|
} catch (error2) {
|
|
logger.warn('Failed to flush pending tool messages before persisting error', { error: error2 });
|
|
}
|
|
|
|
// Push an explicit error message into history for UI rendering
|
|
const errorMessageForHistory: AgentInstanceMessage = {
|
|
id: `ai-error-${Date.now()}-${Math.random().toString(36).slice(2, 7)}`,
|
|
agentId: context.agent.id,
|
|
role: 'error',
|
|
content: errorMessage,
|
|
metadata: { errorDetail: response.errorDetail },
|
|
created: new Date(),
|
|
modified: new Date(),
|
|
// Expire after one round in AI context
|
|
duration: 1,
|
|
};
|
|
context.agent.messages.push(errorMessageForHistory);
|
|
// Persist error message to database so it appears in history like others
|
|
try {
|
|
const agentInstanceService = container.get<IAgentInstanceService>(serviceIdentifier.AgentInstance);
|
|
await agentInstanceService.saveUserMessage(errorMessageForHistory);
|
|
} catch (persistError) {
|
|
logger.warn('Failed to persist error message to database', {
|
|
error: persistError,
|
|
messageId: errorMessageForHistory.id,
|
|
agentId: context.agent.id,
|
|
});
|
|
}
|
|
|
|
// Also yield completed with error state for status panel
|
|
yield error(errorMessage, response.errorDetail, context, currentRequestId);
|
|
return;
|
|
}
|
|
}
|
|
// Reset request ID after processing
|
|
logger.debug('AI generation stream completed', {
|
|
requestId: currentRequestId,
|
|
});
|
|
currentRequestId = undefined;
|
|
} catch (error) {
|
|
logger.error('Unexpected error during AI generation', { error });
|
|
yield completed(`Unexpected error: ${(error as Error).message}`, context);
|
|
} finally {
|
|
if (context.isCancelled() && currentRequestId) {
|
|
logger.debug('Cancelling AI request in finally block', {
|
|
requestId: currentRequestId,
|
|
});
|
|
await externalAPIService.cancelAIRequest(currentRequestId);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Start processing with the initial user message
|
|
yield* processLLMCall();
|
|
} catch (error) {
|
|
logger.error('Error processing prompt', {
|
|
method: 'basicPromptConcatHandler',
|
|
agentId: context.agent.id,
|
|
error,
|
|
});
|
|
yield completed(`Error processing prompt: ${(error as Error).message}`, context);
|
|
}
|
|
}
|