feat: add PRESENT and two fish ciphers

This commit is contained in:
Medjedtxm 2026-01-10 20:24:02 -05:00
parent 2a1294f1c0
commit dd36e30c18
10 changed files with 2363 additions and 0 deletions

View file

@ -107,6 +107,10 @@
"Rabbit",
"SM4 Encrypt",
"SM4 Decrypt",
"PRESENT Encrypt",
"PRESENT Decrypt",
"Twofish Encrypt",
"Twofish Decrypt",
"GOST Encrypt",
"GOST Decrypt",
"GOST Sign",

422
src/core/lib/Present.mjs Normal file
View file

@ -0,0 +1,422 @@
/**
* Complete implementation of PRESENT block cipher encryption/decryption with
* ECB and CBC block modes.
*
* PRESENT is an ultra-lightweight block cipher designed for constrained environments.
* Standardized in ISO/IEC 29192-2:2019.
*
* Reference: "PRESENT: An Ultra-Lightweight Block Cipher"
* https://link.springer.com/chapter/10.1007/978-3-540-74735-2_31
*
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import OperationError from "../errors/OperationError.mjs";
/** Number of rounds */
const NROUNDS = 31;
/** Block size in bytes (64 bits) */
const BLOCKSIZE = 8;
/** The 4-bit S-box (16 values) */
const SBOX = [
0xC, 0x5, 0x6, 0xB, 0x9, 0x0, 0xA, 0xD,
0x3, 0xE, 0xF, 0x8, 0x4, 0x7, 0x1, 0x2
];
/** Inverse S-box for decryption */
const SBOX_INV = [
0x5, 0xE, 0xF, 0x8, 0xC, 0x1, 0x2, 0xD,
0xB, 0x4, 0x6, 0x3, 0x0, 0x7, 0x9, 0xA
];
/** P-layer permutation table (bit i goes to position P[i]) */
const PBOX = [
0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51,
4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55,
8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59,
12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47, 63
];
/** Inverse P-layer permutation for decryption */
const PBOX_INV = new Array(64);
for (let i = 0; i < 64; i++) {
PBOX_INV[PBOX[i]] = i;
}
/**
* Convert byte array to BigInt (big-endian)
* @param {number[]} bytes - Array of bytes
* @returns {bigint} - 64-bit value as BigInt
*/
function bytesToBigInt(bytes) {
let result = 0n;
for (let i = 0; i < bytes.length; i++) {
result = (result << 8n) | BigInt(bytes[i]);
}
return result;
}
/**
* Convert BigInt to byte array (big-endian)
* @param {bigint} value - BigInt value
* @param {number} length - Desired byte array length
* @returns {number[]} - Array of bytes
*/
function bigIntToBytes(value, length) {
const bytes = [];
for (let i = length - 1; i >= 0; i--) {
bytes[i] = Number(value & 0xFFn);
value >>= 8n;
}
return bytes;
}
/**
* Apply S-box substitution layer to 64-bit state
* @param {bigint} state - 64-bit state
* @param {number[]} sbox - S-box to use
* @returns {bigint} - Substituted state
*/
function sBoxLayer(state, sbox) {
let result = 0n;
for (let i = 0; i < 16; i++) {
const nibble = Number((state >> BigInt(i * 4)) & 0xFn);
result |= BigInt(sbox[nibble]) << BigInt(i * 4);
}
return result;
}
/**
* Apply P-layer permutation to 64-bit state
* @param {bigint} state - 64-bit state
* @param {number[]} pbox - Permutation table to use
* @returns {bigint} - Permuted state
*/
function pLayer(state, pbox) {
let result = 0n;
for (let i = 0; i < 64; i++) {
if ((state >> BigInt(i)) & 1n) {
result |= 1n << BigInt(pbox[i]);
}
}
return result;
}
/**
* Generate round keys for 80-bit key
* @param {number[]} key - 10-byte key
* @returns {bigint[]} - Array of 32 round keys (64-bit each)
*/
function generateRoundKeys80(key) {
// Key register is 80 bits
let keyReg = bytesToBigInt(key);
const roundKeys = [];
for (let i = 1; i <= NROUNDS + 1; i++) {
// Extract round key (leftmost 64 bits)
roundKeys.push(keyReg >> 16n);
// Rotate left by 61 positions
keyReg = ((keyReg << 61n) | (keyReg >> 19n)) & ((1n << 80n) - 1n);
// Apply S-box to leftmost 4 bits
const leftNibble = Number(keyReg >> 76n);
keyReg = (keyReg & ((1n << 76n) - 1n)) | (BigInt(SBOX[leftNibble]) << 76n);
// XOR round counter to bits 19-15
keyReg ^= BigInt(i) << 15n;
}
return roundKeys;
}
/**
* Generate round keys for 128-bit key
* @param {number[]} key - 16-byte key
* @returns {bigint[]} - Array of 32 round keys (64-bit each)
*/
function generateRoundKeys128(key) {
// Key register is 128 bits
let keyReg = bytesToBigInt(key);
const roundKeys = [];
for (let i = 1; i <= NROUNDS + 1; i++) {
// Extract round key (leftmost 64 bits)
roundKeys.push(keyReg >> 64n);
// Rotate left by 61 positions
keyReg = ((keyReg << 61n) | (keyReg >> 67n)) & ((1n << 128n) - 1n);
// Apply S-box to leftmost 8 bits (two nibbles: bits 127-124 and 123-120)
const leftByte = Number((keyReg >> 120n) & 0xFFn);
const leftNibble1 = (leftByte >> 4) & 0xF; // bits 127-124
const leftNibble2 = leftByte & 0xF; // bits 123-120
keyReg = (keyReg & ((1n << 120n) - 1n)) |
(BigInt((SBOX[leftNibble1] << 4) | SBOX[leftNibble2]) << 120n);
// XOR round counter to bits 66-62
keyReg ^= BigInt(i) << 62n;
}
return roundKeys;
}
/**
* Encrypt a single 64-bit block
* @param {bigint} block - 64-bit plaintext block
* @param {bigint[]} roundKeys - Round keys
* @returns {bigint} - 64-bit ciphertext block
*/
function encryptBlock(block, roundKeys) {
let state = block;
for (let i = 0; i < NROUNDS; i++) {
// Add round key
state ^= roundKeys[i];
// S-box layer
state = sBoxLayer(state, SBOX);
// P-layer
state = pLayer(state, PBOX);
}
// Final round key addition
state ^= roundKeys[NROUNDS];
return state;
}
/**
* Decrypt a single 64-bit block
* @param {bigint} block - 64-bit ciphertext block
* @param {bigint[]} roundKeys - Round keys
* @returns {bigint} - 64-bit plaintext block
*/
function decryptBlock(block, roundKeys) {
let state = block;
// Reverse key addition
state ^= roundKeys[NROUNDS];
for (let i = NROUNDS - 1; i >= 0; i--) {
// Inverse P-layer
state = pLayer(state, PBOX_INV);
// Inverse S-box layer
state = sBoxLayer(state, SBOX_INV);
// Add round key
state ^= roundKeys[i];
}
return state;
}
/**
* Apply padding to message
* @param {number[]} message - Original message
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @param {number} blockSize - Block size in bytes
* @returns {number[]} - Padded message
*/
function applyPadding(message, padding, blockSize) {
const remainder = message.length % blockSize;
let nPadding = remainder === 0 ? 0 : blockSize - remainder;
// For PKCS5, always add at least one byte (full block if already aligned)
if (padding === "PKCS5" && remainder === 0) {
nPadding = blockSize;
}
if (nPadding === 0) return [...message];
const paddedMessage = [...message];
switch (padding) {
case "NO":
throw new OperationError(`No padding requested but input is not a ${blockSize}-byte multiple.`);
case "PKCS5":
for (let i = 0; i < nPadding; i++) {
paddedMessage.push(nPadding);
}
break;
case "ZERO":
for (let i = 0; i < nPadding; i++) {
paddedMessage.push(0);
}
break;
case "RANDOM":
for (let i = 0; i < nPadding; i++) {
paddedMessage.push(Math.floor(Math.random() * 256));
}
break;
case "BIT":
paddedMessage.push(0x80);
for (let i = 1; i < nPadding; i++) {
paddedMessage.push(0);
}
break;
default:
throw new OperationError(`Unknown padding type: ${padding}`);
}
return paddedMessage;
}
/**
* Remove padding from message
* @param {number[]} message - Padded message
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @param {number} blockSize - Block size in bytes
* @returns {number[]} - Unpadded message
*/
function removePadding(message, padding, blockSize) {
if (message.length === 0) return message;
switch (padding) {
case "NO":
case "ZERO":
case "RANDOM":
// These padding types cannot be reliably removed
return message;
case "PKCS5": {
const padByte = message[message.length - 1];
if (padByte > 0 && padByte <= blockSize) {
// Verify padding
for (let i = 0; i < padByte; i++) {
if (message[message.length - 1 - i] !== padByte) {
throw new OperationError("Invalid PKCS#5 padding.");
}
}
return message.slice(0, message.length - padByte);
}
throw new OperationError("Invalid PKCS#5 padding.");
}
case "BIT": {
// Find 0x80 byte working backwards, skipping zeros
for (let i = message.length - 1; i >= 0; i--) {
if (message[i] === 0x80) {
return message.slice(0, i);
} else if (message[i] !== 0) {
throw new OperationError("Invalid BIT padding.");
}
}
throw new OperationError("Invalid BIT padding.");
}
default:
throw new OperationError(`Unknown padding type: ${padding}`);
}
}
/**
* Encrypt using PRESENT cipher with specified block mode
*
* @param {number[]} message - Plaintext as byte array
* @param {number[]} key - Key (10 bytes for 80-bit or 16 bytes for 128-bit)
* @param {number[]} iv - IV (8 bytes, not used for ECB)
* @param {string} mode - Block cipher mode ("ECB" or "CBC")
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @returns {number[]} - Ciphertext as byte array
*/
export function encryptPRESENT(message, key, iv, mode = "ECB", padding = "PKCS5") {
if (message.length === 0) return [];
// Generate round keys based on key length
const roundKeys = key.length === 10 ?
generateRoundKeys80(key) :
generateRoundKeys128(key);
// Apply padding
const paddedMessage = applyPadding(message, padding, BLOCKSIZE);
const cipherText = [];
switch (mode) {
case "ECB":
for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) {
const block = bytesToBigInt(paddedMessage.slice(i, i + BLOCKSIZE));
const encrypted = encryptBlock(block, roundKeys);
cipherText.push(...bigIntToBytes(encrypted, BLOCKSIZE));
}
break;
case "CBC": {
let ivBlock = bytesToBigInt(iv);
for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) {
let block = bytesToBigInt(paddedMessage.slice(i, i + BLOCKSIZE));
block ^= ivBlock;
const encrypted = encryptBlock(block, roundKeys);
cipherText.push(...bigIntToBytes(encrypted, BLOCKSIZE));
ivBlock = encrypted;
}
break;
}
default:
throw new OperationError(`Invalid block cipher mode: ${mode}`);
}
return cipherText;
}
/**
* Decrypt using PRESENT cipher with specified block mode
*
* @param {number[]} cipherText - Ciphertext as byte array
* @param {number[]} key - Key (10 bytes for 80-bit or 16 bytes for 128-bit)
* @param {number[]} iv - IV (8 bytes, not used for ECB)
* @param {string} mode - Block cipher mode ("ECB" or "CBC")
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @returns {number[]} - Plaintext as byte array
*/
export function decryptPRESENT(cipherText, key, iv, mode = "ECB", padding = "PKCS5") {
if (cipherText.length === 0) return [];
if (cipherText.length % BLOCKSIZE !== 0) {
throw new OperationError(`Invalid ciphertext length: ${cipherText.length} bytes. Must be a multiple of 8.`);
}
// Generate round keys based on key length
const roundKeys = key.length === 10 ?
generateRoundKeys80(key) :
generateRoundKeys128(key);
const plainText = [];
switch (mode) {
case "ECB":
for (let i = 0; i < cipherText.length; i += BLOCKSIZE) {
const block = bytesToBigInt(cipherText.slice(i, i + BLOCKSIZE));
const decrypted = decryptBlock(block, roundKeys);
plainText.push(...bigIntToBytes(decrypted, BLOCKSIZE));
}
break;
case "CBC": {
let ivBlock = bytesToBigInt(iv);
for (let i = 0; i < cipherText.length; i += BLOCKSIZE) {
const block = bytesToBigInt(cipherText.slice(i, i + BLOCKSIZE));
let decrypted = decryptBlock(block, roundKeys);
decrypted ^= ivBlock;
plainText.push(...bigIntToBytes(decrypted, BLOCKSIZE));
ivBlock = block;
}
break;
}
default:
throw new OperationError(`Invalid block cipher mode: ${mode}`);
}
// Remove padding
return removePadding(plainText, padding, BLOCKSIZE);
}

608
src/core/lib/Twofish.mjs Normal file
View file

@ -0,0 +1,608 @@
/**
* Complete implementation of Twofish block cipher encryption/decryption with
* ECB, CBC, CFB, OFB, CTR block modes.
*
* Twofish was an AES finalist designed by Bruce Schneier et al.
* Reference: https://www.schneier.com/academic/twofish/
*
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import OperationError from "../errors/OperationError.mjs";
/** Number of rounds */
const NROUNDS = 16;
/** Block size in bytes (128 bits) */
const BLOCKSIZE = 16;
/** Q0 permutation */
const Q0 = [
0xa9, 0x67, 0xb3, 0xe8, 0x04, 0xfd, 0xa3, 0x76, 0x9a, 0x92, 0x80, 0x78, 0xe4, 0xdd, 0xd1, 0x38,
0x0d, 0xc6, 0x35, 0x98, 0x18, 0xf7, 0xec, 0x6c, 0x43, 0x75, 0x37, 0x26, 0xfa, 0x13, 0x94, 0x48,
0xf2, 0xd0, 0x8b, 0x30, 0x84, 0x54, 0xdf, 0x23, 0x19, 0x5b, 0x3d, 0x59, 0xf3, 0xae, 0xa2, 0x82,
0x63, 0x01, 0x83, 0x2e, 0xd9, 0x51, 0x9b, 0x7c, 0xa6, 0xeb, 0xa5, 0xbe, 0x16, 0x0c, 0xe3, 0x61,
0xc0, 0x8c, 0x3a, 0xf5, 0x73, 0x2c, 0x25, 0x0b, 0xbb, 0x4e, 0x89, 0x6b, 0x53, 0x6a, 0xb4, 0xf1,
0xe1, 0xe6, 0xbd, 0x45, 0xe2, 0xf4, 0xb6, 0x66, 0xcc, 0x95, 0x03, 0x56, 0xd4, 0x1c, 0x1e, 0xd7,
0xfb, 0xc3, 0x8e, 0xb5, 0xe9, 0xcf, 0xbf, 0xba, 0xea, 0x77, 0x39, 0xaf, 0x33, 0xc9, 0x62, 0x71,
0x81, 0x79, 0x09, 0xad, 0x24, 0xcd, 0xf9, 0xd8, 0xe5, 0xc5, 0xb9, 0x4d, 0x44, 0x08, 0x86, 0xe7,
0xa1, 0x1d, 0xaa, 0xed, 0x06, 0x70, 0xb2, 0xd2, 0x41, 0x7b, 0xa0, 0x11, 0x31, 0xc2, 0x27, 0x90,
0x20, 0xf6, 0x60, 0xff, 0x96, 0x5c, 0xb1, 0xab, 0x9e, 0x9c, 0x52, 0x1b, 0x5f, 0x93, 0x0a, 0xef,
0x91, 0x85, 0x49, 0xee, 0x2d, 0x4f, 0x8f, 0x3b, 0x47, 0x87, 0x6d, 0x46, 0xd6, 0x3e, 0x69, 0x64,
0x2a, 0xce, 0xcb, 0x2f, 0xfc, 0x97, 0x05, 0x7a, 0xac, 0x7f, 0xd5, 0x1a, 0x4b, 0x0e, 0xa7, 0x5a,
0x28, 0x14, 0x3f, 0x29, 0x88, 0x3c, 0x4c, 0x02, 0xb8, 0xda, 0xb0, 0x17, 0x55, 0x1f, 0x8a, 0x7d,
0x57, 0xc7, 0x8d, 0x74, 0xb7, 0xc4, 0x9f, 0x72, 0x7e, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
0x6e, 0x50, 0xde, 0x68, 0x65, 0xbc, 0xdb, 0xf8, 0xc8, 0xa8, 0x2b, 0x40, 0xdc, 0xfe, 0x32, 0xa4,
0xca, 0x10, 0x21, 0xf0, 0xd3, 0x5d, 0x0f, 0x00, 0x6f, 0x9d, 0x36, 0x42, 0x4a, 0x5e, 0xc1, 0xe0
];
/** Q1 permutation */
const Q1 = [
0x75, 0xf3, 0xc6, 0xf4, 0xdb, 0x7b, 0xfb, 0xc8, 0x4a, 0xd3, 0xe6, 0x6b, 0x45, 0x7d, 0xe8, 0x4b,
0xd6, 0x32, 0xd8, 0xfd, 0x37, 0x71, 0xf1, 0xe1, 0x30, 0x0f, 0xf8, 0x1b, 0x87, 0xfa, 0x06, 0x3f,
0x5e, 0xba, 0xae, 0x5b, 0x8a, 0x00, 0xbc, 0x9d, 0x6d, 0xc1, 0xb1, 0x0e, 0x80, 0x5d, 0xd2, 0xd5,
0xa0, 0x84, 0x07, 0x14, 0xb5, 0x90, 0x2c, 0xa3, 0xb2, 0x73, 0x4c, 0x54, 0x92, 0x74, 0x36, 0x51,
0x38, 0xb0, 0xbd, 0x5a, 0xfc, 0x60, 0x62, 0x96, 0x6c, 0x42, 0xf7, 0x10, 0x7c, 0x28, 0x27, 0x8c,
0x13, 0x95, 0x9c, 0xc7, 0x24, 0x46, 0x3b, 0x70, 0xca, 0xe3, 0x85, 0xcb, 0x11, 0xd0, 0x93, 0xb8,
0xa6, 0x83, 0x20, 0xff, 0x9f, 0x77, 0xc3, 0xcc, 0x03, 0x6f, 0x08, 0xbf, 0x40, 0xe7, 0x2b, 0xe2,
0x79, 0x0c, 0xaa, 0x82, 0x41, 0x3a, 0xea, 0xb9, 0xe4, 0x9a, 0xa4, 0x97, 0x7e, 0xda, 0x7a, 0x17,
0x66, 0x94, 0xa1, 0x1d, 0x3d, 0xf0, 0xde, 0xb3, 0x0b, 0x72, 0xa7, 0x1c, 0xef, 0xd1, 0x53, 0x3e,
0x8f, 0x33, 0x26, 0x5f, 0xec, 0x76, 0x2a, 0x49, 0x81, 0x88, 0xee, 0x21, 0xc4, 0x1a, 0xeb, 0xd9,
0xc5, 0x39, 0x99, 0xcd, 0xad, 0x31, 0x8b, 0x01, 0x18, 0x23, 0xdd, 0x1f, 0x4e, 0x2d, 0xf9, 0x48,
0x4f, 0xf2, 0x65, 0x8e, 0x78, 0x5c, 0x58, 0x19, 0x8d, 0xe5, 0x98, 0x57, 0x67, 0x7f, 0x05, 0x64,
0xaf, 0x63, 0xb6, 0xfe, 0xf5, 0xb7, 0x3c, 0xa5, 0xce, 0xe9, 0x68, 0x44, 0xe0, 0x4d, 0x43, 0x69,
0x29, 0x2e, 0xac, 0x15, 0x59, 0xa8, 0x0a, 0x9e, 0x6e, 0x47, 0xdf, 0x34, 0x35, 0x6a, 0xcf, 0xdc,
0x22, 0xc9, 0xc0, 0x9b, 0x89, 0xd4, 0xed, 0xab, 0x12, 0xa2, 0x0d, 0x52, 0xbb, 0x02, 0x2f, 0xa9,
0xd7, 0x61, 0x1e, 0xb4, 0x50, 0x04, 0xf6, 0xc2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xbe, 0x91
];
/** Reed-Solomon matrix for key schedule */
const RS = [
[0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E],
[0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5],
[0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19],
[0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03]
];
/**
* Galois Field multiplication in GF(2^8) with polynomial 0x169
*/
function gfMult(a, b, poly) {
let result = 0;
while (b) {
if (b & 1) result ^= a;
a <<= 1;
if (a & 0x100) a ^= poly;
b >>>= 1;
}
return result & 0xFF;
}
/**
* MDS multiplication
*/
function mdsMultiply(x) {
const b0 = x & 0xFF;
const b1 = (x >>> 8) & 0xFF;
const b2 = (x >>> 16) & 0xFF;
const b3 = (x >>> 24) & 0xFF;
// MDS matrix multiplication in GF(2^8) with polynomial 0x169
const r0 = gfMult(b0, 0x01, 0x169) ^ gfMult(b1, 0xEF, 0x169) ^ gfMult(b2, 0x5B, 0x169) ^ gfMult(b3, 0x5B, 0x169);
const r1 = gfMult(b0, 0x5B, 0x169) ^ gfMult(b1, 0xEF, 0x169) ^ gfMult(b2, 0xEF, 0x169) ^ gfMult(b3, 0x01, 0x169);
const r2 = gfMult(b0, 0xEF, 0x169) ^ gfMult(b1, 0x5B, 0x169) ^ gfMult(b2, 0x01, 0x169) ^ gfMult(b3, 0xEF, 0x169);
const r3 = gfMult(b0, 0xEF, 0x169) ^ gfMult(b1, 0x01, 0x169) ^ gfMult(b2, 0xEF, 0x169) ^ gfMult(b3, 0x5B, 0x169);
return (r3 << 24) | (r2 << 16) | (r1 << 8) | r0;
}
/**
* Reed-Solomon multiplication for key schedule
*/
function rsMultiply(key8) {
let result = 0;
for (let i = 0; i < 4; i++) {
let x = 0;
for (let j = 0; j < 8; j++) {
x ^= gfMult(RS[i][j], key8[j], 0x14D);
}
result |= x << (i * 8);
}
return result;
}
/**
* Apply h function (the main keyed permutation)
*/
function h(x, L, k) {
const y = new Array(4);
y[0] = x & 0xFF;
y[1] = (x >>> 8) & 0xFF;
y[2] = (x >>> 16) & 0xFF;
y[3] = (x >>> 24) & 0xFF;
if (k === 4) {
y[0] = Q1[y[0]] ^ (L[3] & 0xFF);
y[1] = Q0[y[1]] ^ ((L[3] >>> 8) & 0xFF);
y[2] = Q0[y[2]] ^ ((L[3] >>> 16) & 0xFF);
y[3] = Q1[y[3]] ^ ((L[3] >>> 24) & 0xFF);
}
if (k >= 3) {
y[0] = Q1[y[0]] ^ (L[2] & 0xFF);
y[1] = Q1[y[1]] ^ ((L[2] >>> 8) & 0xFF);
y[2] = Q0[y[2]] ^ ((L[2] >>> 16) & 0xFF);
y[3] = Q0[y[3]] ^ ((L[2] >>> 24) & 0xFF);
}
// Always do k >= 2
y[0] = Q0[Q0[y[0]] ^ (L[1] & 0xFF)] ^ (L[0] & 0xFF);
y[1] = Q0[Q1[y[1]] ^ ((L[1] >>> 8) & 0xFF)] ^ ((L[0] >>> 8) & 0xFF);
y[2] = Q1[Q0[y[2]] ^ ((L[1] >>> 16) & 0xFF)] ^ ((L[0] >>> 16) & 0xFF);
y[3] = Q1[Q1[y[3]] ^ ((L[1] >>> 24) & 0xFF)] ^ ((L[0] >>> 24) & 0xFF);
// Final q-box lookup
y[0] = Q1[y[0]];
y[1] = Q0[y[1]];
y[2] = Q1[y[2]];
y[3] = Q0[y[3]];
return mdsMultiply((y[3] << 24) | (y[2] << 16) | (y[1] << 8) | y[0]);
}
/**
* Rotate left 32-bit
*/
function ROL(x, n) {
return ((x << n) | (x >>> (32 - n))) >>> 0;
}
/**
* Rotate right 32-bit
*/
function ROR(x, n) {
return ((x >>> n) | (x << (32 - n))) >>> 0;
}
/**
* Generate subkeys from the key
*/
function generateSubkeys(key) {
const keyLen = key.length;
const k = keyLen / 8; // 2, 3, or 4
// Split key into Me (even words) and Mo (odd words)
const Me = new Array(k);
const Mo = new Array(k);
for (let i = 0; i < k; i++) {
const offset = i * 8;
Me[i] = (key[offset]) | (key[offset + 1] << 8) |
(key[offset + 2] << 16) | (key[offset + 3] << 24);
Mo[i] = (key[offset + 4]) | (key[offset + 5] << 8) |
(key[offset + 6] << 16) | (key[offset + 7] << 24);
}
// Generate S-box keys using Reed-Solomon
const S = new Array(k);
for (let i = 0; i < k; i++) {
const offset = (k - 1 - i) * 8;
S[i] = rsMultiply(key.slice(offset, offset + 8));
}
// Generate round subkeys
const subkeys = new Array(40);
const rho = 0x01010101;
for (let i = 0; i < 20; i++) {
const A = h(2 * i * rho, Me, k);
const B = ROL(h((2 * i + 1) * rho, Mo, k), 8);
subkeys[2 * i] = (A + B) >>> 0;
subkeys[2 * i + 1] = ROL((A + 2 * B) >>> 0, 9);
}
return { subkeys, S, k };
}
/**
* g function using precomputed S-box keys
*/
function g(x, S, k) {
return h(x, S, k);
}
/**
* Encrypt a single 128-bit block
*/
function encryptBlock(block, keyData) {
const { subkeys, S, k } = keyData;
// Split block into 4 words (little-endian)
let R0 = (block[0]) | (block[1] << 8) | (block[2] << 16) | (block[3] << 24);
let R1 = (block[4]) | (block[5] << 8) | (block[6] << 16) | (block[7] << 24);
let R2 = (block[8]) | (block[9] << 8) | (block[10] << 16) | (block[11] << 24);
let R3 = (block[12]) | (block[13] << 8) | (block[14] << 16) | (block[15] << 24);
// Input whitening
R0 ^= subkeys[0];
R1 ^= subkeys[1];
R2 ^= subkeys[2];
R3 ^= subkeys[3];
// 16 rounds
for (let r = 0; r < NROUNDS; r += 2) {
let T0 = g(R0, S, k);
let T1 = g(ROL(R1, 8), S, k);
R2 = ROR(R2 ^ ((T0 + T1 + subkeys[8 + 2 * r]) >>> 0), 1);
R3 = ROL(R3, 1) ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r]) >>> 0);
T0 = g(R2, S, k);
T1 = g(ROL(R3, 8), S, k);
R0 = ROR(R0 ^ ((T0 + T1 + subkeys[8 + 2 * r + 2]) >>> 0), 1);
R1 = ROL(R1, 1) ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r + 2]) >>> 0);
}
// Output whitening (with undo of last swap)
R2 ^= subkeys[4];
R3 ^= subkeys[5];
R0 ^= subkeys[6];
R1 ^= subkeys[7];
// Convert back to bytes (little-endian)
return [
R2 & 0xFF, (R2 >>> 8) & 0xFF, (R2 >>> 16) & 0xFF, (R2 >>> 24) & 0xFF,
R3 & 0xFF, (R3 >>> 8) & 0xFF, (R3 >>> 16) & 0xFF, (R3 >>> 24) & 0xFF,
R0 & 0xFF, (R0 >>> 8) & 0xFF, (R0 >>> 16) & 0xFF, (R0 >>> 24) & 0xFF,
R1 & 0xFF, (R1 >>> 8) & 0xFF, (R1 >>> 16) & 0xFF, (R1 >>> 24) & 0xFF
];
}
/**
* Decrypt a single 128-bit block
*/
function decryptBlock(block, keyData) {
const { subkeys, S, k } = keyData;
// Split block into 4 words (little-endian)
let R0 = (block[0]) | (block[1] << 8) | (block[2] << 16) | (block[3] << 24);
let R1 = (block[4]) | (block[5] << 8) | (block[6] << 16) | (block[7] << 24);
let R2 = (block[8]) | (block[9] << 8) | (block[10] << 16) | (block[11] << 24);
let R3 = (block[12]) | (block[13] << 8) | (block[14] << 16) | (block[15] << 24);
// Input whitening (reverse of output whitening)
R0 ^= subkeys[4];
R1 ^= subkeys[5];
R2 ^= subkeys[6];
R3 ^= subkeys[7];
// 16 rounds in reverse
for (let r = NROUNDS - 2; r >= 0; r -= 2) {
let T0 = g(R0, S, k);
let T1 = g(ROL(R1, 8), S, k);
R2 = ROL(R2, 1) ^ ((T0 + T1 + subkeys[8 + 2 * r + 2]) >>> 0);
R3 = ROR(R3 ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r + 2]) >>> 0), 1);
T0 = g(R2, S, k);
T1 = g(ROL(R3, 8), S, k);
R0 = ROL(R0, 1) ^ ((T0 + T1 + subkeys[8 + 2 * r]) >>> 0);
R1 = ROR(R1 ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r]) >>> 0), 1);
}
// Output whitening (reverse of input whitening)
R2 ^= subkeys[0];
R3 ^= subkeys[1];
R0 ^= subkeys[2];
R1 ^= subkeys[3];
// Convert back to bytes (little-endian)
return [
R2 & 0xFF, (R2 >>> 8) & 0xFF, (R2 >>> 16) & 0xFF, (R2 >>> 24) & 0xFF,
R3 & 0xFF, (R3 >>> 8) & 0xFF, (R3 >>> 16) & 0xFF, (R3 >>> 24) & 0xFF,
R0 & 0xFF, (R0 >>> 8) & 0xFF, (R0 >>> 16) & 0xFF, (R0 >>> 24) & 0xFF,
R1 & 0xFF, (R1 >>> 8) & 0xFF, (R1 >>> 16) & 0xFF, (R1 >>> 24) & 0xFF
];
}
/**
* XOR two 16-byte blocks
*/
function xorBlocks(a, b) {
const result = new Array(16);
for (let i = 0; i < 16; i++) {
result[i] = a[i] ^ b[i];
}
return result;
}
/**
* Increment counter (little-endian)
*/
function incrementCounter(counter) {
const result = [...counter];
for (let i = 0; i < 16; i++) {
result[i]++;
if (result[i] <= 255) break;
result[i] = 0;
}
return result;
}
/**
* Apply padding to message
* @param {number[]} message - Original message
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @param {number} blockSize - Block size in bytes
* @returns {number[]} - Padded message
*/
function applyPadding(message, padding, blockSize) {
const remainder = message.length % blockSize;
let nPadding = remainder === 0 ? 0 : blockSize - remainder;
// For PKCS5, always add at least one byte (full block if already aligned)
if (padding === "PKCS5" && remainder === 0) {
nPadding = blockSize;
}
if (nPadding === 0) return [...message];
const paddedMessage = [...message];
switch (padding) {
case "NO":
throw new OperationError(`No padding requested but input is not a ${blockSize}-byte multiple.`);
case "PKCS5":
for (let i = 0; i < nPadding; i++) {
paddedMessage.push(nPadding);
}
break;
case "ZERO":
for (let i = 0; i < nPadding; i++) {
paddedMessage.push(0);
}
break;
case "RANDOM":
for (let i = 0; i < nPadding; i++) {
paddedMessage.push(Math.floor(Math.random() * 256));
}
break;
case "BIT":
paddedMessage.push(0x80);
for (let i = 1; i < nPadding; i++) {
paddedMessage.push(0);
}
break;
default:
throw new OperationError(`Unknown padding type: ${padding}`);
}
return paddedMessage;
}
/**
* Remove padding from message
* @param {number[]} message - Padded message
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @param {number} blockSize - Block size in bytes
* @returns {number[]} - Unpadded message
*/
function removePadding(message, padding, blockSize) {
if (message.length === 0) return message;
switch (padding) {
case "NO":
case "ZERO":
case "RANDOM":
// These padding types cannot be reliably removed
return message;
case "PKCS5": {
const padByte = message[message.length - 1];
if (padByte > 0 && padByte <= blockSize) {
// Verify padding
for (let i = 0; i < padByte; i++) {
if (message[message.length - 1 - i] !== padByte) {
throw new OperationError("Invalid PKCS#5 padding.");
}
}
return message.slice(0, message.length - padByte);
}
throw new OperationError("Invalid PKCS#5 padding.");
}
case "BIT": {
// Find 0x80 byte working backwards, skipping zeros
for (let i = message.length - 1; i >= 0; i--) {
if (message[i] === 0x80) {
return message.slice(0, i);
} else if (message[i] !== 0) {
throw new OperationError("Invalid BIT padding.");
}
}
throw new OperationError("Invalid BIT padding.");
}
default:
throw new OperationError(`Unknown padding type: ${padding}`);
}
}
/**
* Encrypt using Twofish cipher with specified block mode
*
* @param {number[]} message - Plaintext as byte array
* @param {number[]} key - Key (16, 24, or 32 bytes)
* @param {number[]} iv - IV (16 bytes, not used for ECB)
* @param {string} mode - Block cipher mode ("ECB", "CBC", "CFB", "OFB", "CTR")
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @returns {number[]} - Ciphertext as byte array
*/
export function encryptTwofish(message, key, iv, mode = "ECB", padding = "PKCS5") {
const messageLength = message.length;
if (messageLength === 0) return [];
const keyData = generateSubkeys(key);
// Apply padding for ECB/CBC modes
let paddedMessage;
if (mode === "ECB" || mode === "CBC") {
paddedMessage = applyPadding(message, padding, BLOCKSIZE);
} else {
// Stream modes (CFB, OFB, CTR) don't need padding
paddedMessage = [...message];
}
const cipherText = [];
switch (mode) {
case "ECB":
for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) {
const block = paddedMessage.slice(i, i + BLOCKSIZE);
cipherText.push(...encryptBlock(block, keyData));
}
break;
case "CBC": {
let ivBlock = [...iv];
for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) {
const block = paddedMessage.slice(i, i + BLOCKSIZE);
const xored = xorBlocks(block, ivBlock);
ivBlock = encryptBlock(xored, keyData);
cipherText.push(...ivBlock);
}
break;
}
case "CFB": {
let ivBlock = [...iv];
for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) {
const encrypted = encryptBlock(ivBlock, keyData);
const block = paddedMessage.slice(i, i + BLOCKSIZE);
ivBlock = xorBlocks(encrypted, block);
cipherText.push(...ivBlock);
}
return cipherText.slice(0, messageLength);
}
case "OFB": {
let ivBlock = [...iv];
for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) {
ivBlock = encryptBlock(ivBlock, keyData);
const block = paddedMessage.slice(i, i + BLOCKSIZE);
cipherText.push(...xorBlocks(ivBlock, block));
}
return cipherText.slice(0, messageLength);
}
case "CTR": {
let counter = [...iv];
for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) {
const encrypted = encryptBlock(counter, keyData);
const block = paddedMessage.slice(i, i + BLOCKSIZE);
cipherText.push(...xorBlocks(encrypted, block));
counter = incrementCounter(counter);
}
return cipherText.slice(0, messageLength);
}
default:
throw new OperationError(`Invalid block cipher mode: ${mode}`);
}
return cipherText;
}
/**
* Decrypt using Twofish cipher with specified block mode
*
* @param {number[]} cipherText - Ciphertext as byte array
* @param {number[]} key - Key (16, 24, or 32 bytes)
* @param {number[]} iv - IV (16 bytes, not used for ECB)
* @param {string} mode - Block cipher mode ("ECB", "CBC", "CFB", "OFB", "CTR")
* @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT")
* @returns {number[]} - Plaintext as byte array
*/
export function decryptTwofish(cipherText, key, iv, mode = "ECB", padding = "PKCS5") {
const originalLength = cipherText.length;
if (originalLength === 0) return [];
const keyData = generateSubkeys(key);
if (mode === "ECB" || mode === "CBC") {
if ((originalLength % BLOCKSIZE) !== 0)
throw new OperationError(`Invalid ciphertext length: ${originalLength} bytes. Must be a multiple of 16.`);
} else {
// Pad for stream modes
while ((cipherText.length % BLOCKSIZE) !== 0)
cipherText.push(0);
}
const plainText = [];
switch (mode) {
case "ECB":
for (let i = 0; i < cipherText.length; i += BLOCKSIZE) {
const block = cipherText.slice(i, i + BLOCKSIZE);
plainText.push(...decryptBlock(block, keyData));
}
break;
case "CBC": {
let ivBlock = [...iv];
for (let i = 0; i < cipherText.length; i += BLOCKSIZE) {
const block = cipherText.slice(i, i + BLOCKSIZE);
const decrypted = decryptBlock(block, keyData);
plainText.push(...xorBlocks(decrypted, ivBlock));
ivBlock = block;
}
break;
}
case "CFB": {
let ivBlock = [...iv];
for (let i = 0; i < cipherText.length; i += BLOCKSIZE) {
const encrypted = encryptBlock(ivBlock, keyData);
const block = cipherText.slice(i, i + BLOCKSIZE);
plainText.push(...xorBlocks(encrypted, block));
ivBlock = block;
}
return plainText.slice(0, originalLength);
}
case "OFB": {
let ivBlock = [...iv];
for (let i = 0; i < cipherText.length; i += BLOCKSIZE) {
ivBlock = encryptBlock(ivBlock, keyData);
const block = cipherText.slice(i, i + BLOCKSIZE);
plainText.push(...xorBlocks(ivBlock, block));
}
return plainText.slice(0, originalLength);
}
case "CTR": {
let counter = [...iv];
for (let i = 0; i < cipherText.length; i += BLOCKSIZE) {
const encrypted = encryptBlock(counter, keyData);
const block = cipherText.slice(i, i + BLOCKSIZE);
plainText.push(...xorBlocks(encrypted, block));
counter = incrementCounter(counter);
}
return plainText.slice(0, originalLength);
}
default:
throw new OperationError(`Invalid block cipher mode: ${mode}`);
}
// Remove padding for ECB/CBC modes
if (mode === "ECB" || mode === "CBC") {
return removePadding(plainText, padding, BLOCKSIZE);
}
return plainText.slice(0, originalLength);
}

View file

@ -0,0 +1,94 @@
/**
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import Operation from "../Operation.mjs";
import Utils from "../Utils.mjs";
import OperationError from "../errors/OperationError.mjs";
import { toHex } from "../lib/Hex.mjs";
import { decryptPRESENT } from "../lib/Present.mjs";
/**
* PRESENT Decrypt operation
*/
class PRESENTDecrypt extends Operation {
/**
* PRESENTDecrypt constructor
*/
constructor() {
super();
this.name = "PRESENT Decrypt";
this.module = "Ciphers";
this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardized in ISO/IEC 29192-2:2019.<br><br>When using CBC mode, the PKCS#7 padding scheme is used.";
this.infoURL = "https://wikipedia.org/wiki/PRESENT_(cipher)";
this.inputType = "string";
this.outputType = "string";
this.args = [
{
"name": "Key",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "IV",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "Mode",
"type": "option",
"value": ["CBC", "ECB"]
},
{
"name": "Input",
"type": "option",
"value": ["Hex", "Raw"]
},
{
"name": "Output",
"type": "option",
"value": ["Raw", "Hex"]
},
{
"name": "Padding",
"type": "option",
"value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"]
}
];
}
/**
* @param {string} input
* @param {Object[]} args
* @returns {string}
*/
run(input, args) {
const key = Utils.convertToByteArray(args[0].string, args[0].option),
iv = Utils.convertToByteArray(args[1].string, args[1].option),
[,, mode, inputType, outputType, padding] = args;
if (key.length !== 10 && key.length !== 16)
throw new OperationError(`Invalid key length: ${key.length} bytes
PRESENT uses a key length of 10 bytes (80 bits) or 16 bytes (128 bits).`);
if (iv.length !== 8 && mode !== "ECB")
throw new OperationError(`Invalid IV length: ${iv.length} bytes
PRESENT uses an IV length of 8 bytes (64 bits).
Make sure you have specified the type correctly (e.g. Hex vs UTF8).`);
input = Utils.convertToByteArray(input, inputType);
const output = decryptPRESENT(input, key, iv, mode, padding);
return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output);
}
}
export default PRESENTDecrypt;

View file

@ -0,0 +1,94 @@
/**
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import Operation from "../Operation.mjs";
import Utils from "../Utils.mjs";
import OperationError from "../errors/OperationError.mjs";
import { toHex } from "../lib/Hex.mjs";
import { encryptPRESENT } from "../lib/Present.mjs";
/**
* PRESENT Encrypt operation
*/
class PRESENTEncrypt extends Operation {
/**
* PRESENTEncrypt constructor
*/
constructor() {
super();
this.name = "PRESENT Encrypt";
this.module = "Ciphers";
this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardized in ISO/IEC 29192-2:2019.<br><br>When using CBC mode, the PKCS#7 padding scheme is used.";
this.infoURL = "https://wikipedia.org/wiki/PRESENT_(cipher)";
this.inputType = "string";
this.outputType = "string";
this.args = [
{
"name": "Key",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "IV",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "Mode",
"type": "option",
"value": ["CBC", "ECB"]
},
{
"name": "Input",
"type": "option",
"value": ["Raw", "Hex"]
},
{
"name": "Output",
"type": "option",
"value": ["Hex", "Raw"]
},
{
"name": "Padding",
"type": "option",
"value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"]
}
];
}
/**
* @param {string} input
* @param {Object[]} args
* @returns {string}
*/
run(input, args) {
const key = Utils.convertToByteArray(args[0].string, args[0].option),
iv = Utils.convertToByteArray(args[1].string, args[1].option),
[,, mode, inputType, outputType, padding] = args;
if (key.length !== 10 && key.length !== 16)
throw new OperationError(`Invalid key length: ${key.length} bytes
PRESENT uses a key length of 10 bytes (80 bits) or 16 bytes (128 bits).`);
if (iv.length !== 8 && mode !== "ECB")
throw new OperationError(`Invalid IV length: ${iv.length} bytes
PRESENT uses an IV length of 8 bytes (64 bits).
Make sure you have specified the type correctly (e.g. Hex vs UTF8).`);
input = Utils.convertToByteArray(input, inputType);
const output = encryptPRESENT(input, key, iv, mode, padding);
return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output);
}
}
export default PRESENTEncrypt;

View file

@ -0,0 +1,94 @@
/**
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import Operation from "../Operation.mjs";
import Utils from "../Utils.mjs";
import OperationError from "../errors/OperationError.mjs";
import { toHex } from "../lib/Hex.mjs";
import { decryptTwofish } from "../lib/Twofish.mjs";
/**
* Twofish Decrypt operation
*/
class TwofishDecrypt extends Operation {
/**
* TwofishDecrypt constructor
*/
constructor() {
super();
this.name = "Twofish Decrypt";
this.module = "Ciphers";
this.description = "Twofish is a symmetric key block cipher designed by Bruce Schneier. It was one of the five AES finalists. Twofish operates on 128-bit blocks and supports key sizes of 128, 192, or 256 bits with 16 rounds of a Feistel network.<br><br>When using CBC or ECB mode, the PKCS#7 padding scheme is used.";
this.infoURL = "https://wikipedia.org/wiki/Twofish";
this.inputType = "string";
this.outputType = "string";
this.args = [
{
"name": "Key",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "IV",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "Mode",
"type": "option",
"value": ["CBC", "CFB", "OFB", "CTR", "ECB"]
},
{
"name": "Input",
"type": "option",
"value": ["Hex", "Raw"]
},
{
"name": "Output",
"type": "option",
"value": ["Raw", "Hex"]
},
{
"name": "Padding",
"type": "option",
"value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"]
}
];
}
/**
* @param {string} input
* @param {Object[]} args
* @returns {string}
*/
run(input, args) {
const key = Utils.convertToByteArray(args[0].string, args[0].option),
iv = Utils.convertToByteArray(args[1].string, args[1].option),
[,, mode, inputType, outputType, padding] = args;
if (key.length !== 16 && key.length !== 24 && key.length !== 32)
throw new OperationError(`Invalid key length: ${key.length} bytes
Twofish uses a key length of 16 bytes (128 bits), 24 bytes (192 bits), or 32 bytes (256 bits).`);
if (iv.length !== 16 && mode !== "ECB")
throw new OperationError(`Invalid IV length: ${iv.length} bytes
Twofish uses an IV length of 16 bytes (128 bits).
Make sure you have specified the type correctly (e.g. Hex vs UTF8).`);
input = Utils.convertToByteArray(input, inputType);
const output = decryptTwofish(input, key, iv, mode, padding);
return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output);
}
}
export default TwofishDecrypt;

View file

@ -0,0 +1,94 @@
/**
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import Operation from "../Operation.mjs";
import Utils from "../Utils.mjs";
import OperationError from "../errors/OperationError.mjs";
import { toHex } from "../lib/Hex.mjs";
import { encryptTwofish } from "../lib/Twofish.mjs";
/**
* Twofish Encrypt operation
*/
class TwofishEncrypt extends Operation {
/**
* TwofishEncrypt constructor
*/
constructor() {
super();
this.name = "Twofish Encrypt";
this.module = "Ciphers";
this.description = "Twofish is a symmetric key block cipher designed by Bruce Schneier. It was one of the five AES finalists. Twofish operates on 128-bit blocks and supports key sizes of 128, 192, or 256 bits with 16 rounds of a Feistel network.<br><br>When using CBC or ECB mode, the PKCS#7 padding scheme is used.";
this.infoURL = "https://wikipedia.org/wiki/Twofish";
this.inputType = "string";
this.outputType = "string";
this.args = [
{
"name": "Key",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "IV",
"type": "toggleString",
"value": "",
"toggleValues": ["Hex", "UTF8", "Latin1", "Base64"]
},
{
"name": "Mode",
"type": "option",
"value": ["CBC", "CFB", "OFB", "CTR", "ECB"]
},
{
"name": "Input",
"type": "option",
"value": ["Raw", "Hex"]
},
{
"name": "Output",
"type": "option",
"value": ["Hex", "Raw"]
},
{
"name": "Padding",
"type": "option",
"value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"]
}
];
}
/**
* @param {string} input
* @param {Object[]} args
* @returns {string}
*/
run(input, args) {
const key = Utils.convertToByteArray(args[0].string, args[0].option),
iv = Utils.convertToByteArray(args[1].string, args[1].option),
[,, mode, inputType, outputType, padding] = args;
if (key.length !== 16 && key.length !== 24 && key.length !== 32)
throw new OperationError(`Invalid key length: ${key.length} bytes
Twofish uses a key length of 16 bytes (128 bits), 24 bytes (192 bits), or 32 bytes (256 bits).`);
if (iv.length !== 16 && mode !== "ECB")
throw new OperationError(`Invalid IV length: ${iv.length} bytes
Twofish uses an IV length of 16 bytes (128 bits).
Make sure you have specified the type correctly (e.g. Hex vs UTF8).`);
input = Utils.convertToByteArray(input, inputType);
const output = encryptTwofish(input, key, iv, mode, padding);
return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output);
}
}
export default TwofishEncrypt;

View file

@ -128,6 +128,7 @@ import "./tests/ParseUDP.mjs";
import "./tests/PEMtoHex.mjs";
import "./tests/PGP.mjs";
import "./tests/PHP.mjs";
import "./tests/PRESENT.mjs";
import "./tests/PHPSerialize.mjs";
import "./tests/PowerSet.mjs";
import "./tests/Protobuf.mjs";
@ -163,6 +164,7 @@ import "./tests/Template.mjs";
import "./tests/TextEncodingBruteForce.mjs";
import "./tests/ToFromInsensitiveRegex.mjs";
import "./tests/TranslateDateTimeFormat.mjs";
import "./tests/Twofish.mjs";
import "./tests/Typex.mjs";
import "./tests/UnescapeString.mjs";
import "./tests/Unicode.mjs";

View file

@ -0,0 +1,465 @@
/**
* PRESENT cipher tests.
*
* Test vectors from the original PRESENT paper:
* "PRESENT: An Ultra-Lightweight Block Cipher"
* https://link.springer.com/chapter/10.1007/978-3-540-74735-2_31
* https://www.iacr.org/archive/ches2007/47270450/47270450.pdf
*
* Note: PKCS5 padding adds an extra block when input is exactly block-aligned.
* Round-trip tests verify correct encryption/decryption behavior.
*
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import TestRegister from "../../lib/TestRegister.mjs";
TestRegister.addTests([
// ============================================================
// OFFICIAL TEST VECTORS from the original PRESENT paper:
// "PRESENT: An Ultra-Lightweight Block Cipher" (Bogdanov et al., CHES 2007)
// https://link.springer.com/chapter/10.1007/978-3-540-74735-2_31
// Table 3: Test Vectors
// ============================================================
{
name: "PRESENT Official Vector 1: 80-bit zero key, zero plaintext",
input: "0000000000000000",
expectedOutput: "5579c1387b228445",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 2: 80-bit all-ones key, zero plaintext",
input: "0000000000000000",
expectedOutput: "e72c46c0f5945049",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "ffffffffffffffffffff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 3: 80-bit zero key, all-ones plaintext",
input: "ffffffffffffffff",
expectedOutput: "a112ffc72f68417b",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 4: 80-bit all-ones key, all-ones plaintext",
input: "ffffffffffffffff",
expectedOutput: "3333dcd3213210d2",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "ffffffffffffffffffff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 5: 128-bit zero key, zero plaintext",
input: "0000000000000000",
expectedOutput: "96db702a2e6900af",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 6: 128-bit key (SageMath reference)",
input: "0123456789abcdef",
expectedOutput: "0e9d28685e671dd6",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "0123456789abcdef0123456789abcdef", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
// Decrypt verification of official vectors
{
name: "PRESENT Official Vector 1 Decrypt: 80-bit zero key",
input: "5579c1387b228445",
expectedOutput: "0000000000000000",
recipeConfig: [
{
op: "PRESENT Decrypt",
args: [
{ string: "00000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 4 Decrypt: 80-bit all-ones key",
input: "3333dcd3213210d2",
expectedOutput: "ffffffffffffffff",
recipeConfig: [
{
op: "PRESENT Decrypt",
args: [
{ string: "ffffffffffffffffffff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 5 Decrypt: 128-bit zero key",
input: "96db702a2e6900af",
expectedOutput: "0000000000000000",
recipeConfig: [
{
op: "PRESENT Decrypt",
args: [
{ string: "00000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "PRESENT Official Vector 6 Decrypt: 128-bit key (SageMath reference)",
input: "0e9d28685e671dd6",
expectedOutput: "0123456789abcdef",
recipeConfig: [
{
op: "PRESENT Decrypt",
args: [
{ string: "0123456789abcdef0123456789abcdef", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
// ============================================================
// Round-trip tests - These verify encryption and decryption work correctly
// ============================================================
{
name: "PRESENT Round-trip: ECB 80-bit key, short message",
input: "Hello!!!",
expectedOutput: "Hello!!!",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: CBC 80-bit key, long message",
input: "The quick brown fox jumps over the lazy dog",
expectedOutput: "The quick brown fox jumps over the lazy dog",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "aabbccddeeff00112233", option: "Hex" },
{ string: "0011223344556677", option: "Hex" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "aabbccddeeff00112233", option: "Hex" },
{ string: "0011223344556677", option: "Hex" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: ECB 128-bit key",
input: "Testing PRESENT cipher with 128-bit key",
expectedOutput: "Testing PRESENT cipher with 128-bit key",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: CBC 128-bit key",
input: "PRESENT is an ultra-lightweight block cipher!",
expectedOutput: "PRESENT is an ultra-lightweight block cipher!",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
{ string: "8877665544332211", option: "Hex" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
{ string: "8877665544332211", option: "Hex" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: UTF8 key (10 bytes)",
input: "Secret message",
expectedOutput: "Secret message",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "mypassword", option: "UTF8" },
{ string: "initvect", option: "UTF8" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "mypassword", option: "UTF8" },
{ string: "initvect", option: "UTF8" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
// Encryption consistency tests - verify same input always produces same output
{
name: "PRESENT Encrypt: 80-bit zero key consistency",
input: "TestData",
expectedOutput: "b78cfea5ffcd89f265585a6ce7312131",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
}
]
},
{
name: "PRESENT Encrypt: 128-bit zero key consistency",
input: "TestData",
expectedOutput: "e127a24e38de2c36407e794ef5dffefd",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: Various lengths 1 byte",
input: "A",
expectedOutput: "A",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: Various lengths 7 bytes",
input: "1234567",
expectedOutput: "1234567",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: Various lengths 8 bytes (exact block)",
input: "12345678",
expectedOutput: "12345678",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: Various lengths 9 bytes",
input: "123456789",
expectedOutput: "123456789",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: Various lengths 16 bytes (two blocks)",
input: "1234567890ABCDEF",
expectedOutput: "1234567890ABCDEF",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "00112233445566778899", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "PRESENT Round-trip: Binary data",
input: "\x00\x01\x02\x03\x04\x05\x06\x07",
expectedOutput: "\x00\x01\x02\x03\x04\x05\x06\x07",
recipeConfig: [
{
op: "PRESENT Encrypt",
args: [
{ string: "ffeeddccbbaa99887766", option: "Hex" },
{ string: "0011223344556677", option: "Hex" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "PRESENT Decrypt",
args: [
{ string: "ffeeddccbbaa99887766", option: "Hex" },
{ string: "0011223344556677", option: "Hex" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
}
]);

View file

@ -0,0 +1,486 @@
/**
* Twofish cipher tests.
*
* Test vectors from the official Twofish paper:
* https://www.schneier.com/academic/twofish/
*
* Note: PKCS5 padding adds an extra block when input is exactly block-aligned.
* Round-trip tests verify correct encryption/decryption behavior.
*
* @author Medjedtxm
* @copyright Crown Copyright 2026
* @license Apache-2.0
*/
import TestRegister from "../../lib/TestRegister.mjs";
TestRegister.addTests([
// ============================================================
// OFFICIAL TEST VECTORS from Bruce Schneier's Twofish paper:
// https://www.schneier.com/academic/twofish/
// https://www.schneier.com/wp-content/uploads/2015/12/ecb_ival.txt
// ============================================================
{
name: "Twofish Official Vector: 128-bit zero key, zero plaintext",
input: "00000000000000000000000000000000",
expectedOutput: "9f589f5cf6122c32b6bfec2f2ae8c35a",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "Twofish Official Vector: 192-bit zero key, zero plaintext",
input: "00000000000000000000000000000000",
expectedOutput: "efa71f788965bd4453f860178fc19101",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "000000000000000000000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
{
name: "Twofish Official Vector: 256-bit zero key, zero plaintext",
input: "00000000000000000000000000000000",
expectedOutput: "57ff739d4dc92c1bd7fc01700cc8216f",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "0000000000000000000000000000000000000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
// Decrypt verification of official vectors
{
name: "Twofish Official Vector Decrypt: 128-bit zero key",
input: "9f589f5cf6122c32b6bfec2f2ae8c35a",
expectedOutput: "00000000000000000000000000000000",
recipeConfig: [
{
op: "Twofish Decrypt",
args: [
{ string: "00000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Hex", "NO"
]
}
]
},
// ============================================================
// Round-trip tests for ECB mode with various key sizes
// ============================================================
{
name: "Twofish Round-trip: ECB 128-bit key",
input: "Hello, World!!!",
expectedOutput: "Hello, World!!!",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: ECB 192-bit key",
input: "Testing Twofish with 192-bit key",
expectedOutput: "Testing Twofish with 192-bit key",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: ECB 256-bit key",
input: "Testing Twofish with 256-bit key encryption",
expectedOutput: "Testing Twofish with 256-bit key encryption",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
// Round-trip tests for CBC mode
{
name: "Twofish Round-trip: CBC 128-bit key",
input: "The quick brown fox jumps over the lazy dog",
expectedOutput: "The quick brown fox jumps over the lazy dog",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: CBC 192-bit key",
input: "Testing Twofish with 192-bit key in CBC mode",
expectedOutput: "Testing Twofish with 192-bit key in CBC mode",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: CBC 256-bit key",
input: "Testing Twofish with 256-bit key in CBC mode",
expectedOutput: "Testing Twofish with 256-bit key in CBC mode",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
// Round-trip tests for CFB mode
{
name: "Twofish Round-trip: CFB 128-bit key",
input: "Testing Twofish CFB mode encryption",
expectedOutput: "Testing Twofish CFB mode encryption",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "deadbeefcafebabe0123456789abcdef", option: "Hex" },
{ string: "0102030405060708090a0b0c0d0e0f10", option: "Hex" },
"CFB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "deadbeefcafebabe0123456789abcdef", option: "Hex" },
{ string: "0102030405060708090a0b0c0d0e0f10", option: "Hex" },
"CFB", "Hex", "Raw", "PKCS5"
]
}
]
},
// Round-trip tests for OFB mode
{
name: "Twofish Round-trip: OFB 128-bit key",
input: "Testing Twofish OFB mode encryption",
expectedOutput: "Testing Twofish OFB mode encryption",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"OFB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
"OFB", "Hex", "Raw", "PKCS5"
]
}
]
},
// Round-trip tests for CTR mode
{
name: "Twofish Round-trip: CTR 128-bit key",
input: "Testing Twofish CTR mode encryption",
expectedOutput: "Testing Twofish CTR mode encryption",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "00000000000000000000000000000001", option: "Hex" },
"CTR", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "00000000000000000000000000000001", option: "Hex" },
"CTR", "Hex", "Raw", "PKCS5"
]
}
]
},
// UTF8 key tests
{
name: "Twofish Round-trip: UTF8 key (16 bytes)",
input: "Secret message!",
expectedOutput: "Secret message!",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "MySecretPassword", option: "UTF8" },
{ string: "InitVectorHere!!", option: "UTF8" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "MySecretPassword", option: "UTF8" },
{ string: "InitVectorHere!!", option: "UTF8" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
// Various input length tests
{
name: "Twofish Round-trip: 1 byte input",
input: "A",
expectedOutput: "A",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: 15 byte input",
input: "123456789012345",
expectedOutput: "123456789012345",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: 16 byte input (exact block)",
input: "1234567890123456",
expectedOutput: "1234567890123456",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: 17 byte input",
input: "12345678901234567",
expectedOutput: "12345678901234567",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
{
name: "Twofish Round-trip: 32 byte input (two blocks)",
input: "12345678901234567890123456789012",
expectedOutput: "12345678901234567890123456789012",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Hex", "Raw", "PKCS5"
]
}
]
},
// Binary data test
{
name: "Twofish Round-trip: Binary data",
input: "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
expectedOutput: "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
"CBC", "Raw", "Hex", "PKCS5"
]
},
{
op: "Twofish Decrypt",
args: [
{ string: "ffeeddccbbaa99887766554433221100", option: "Hex" },
{ string: "00112233445566778899aabbccddeeff", option: "Hex" },
"CBC", "Hex", "Raw", "PKCS5"
]
}
]
},
// Consistency test - same input should always produce same output
{
name: "Twofish Encrypt: 128-bit key consistency test",
input: "TestData12345678",
expectedOutput: "8aed2d3a85dc3e0b663ba1fe1fdaf056771d591428af301d69fa1e227d083527",
recipeConfig: [
{
op: "Twofish Encrypt",
args: [
{ string: "00000000000000000000000000000000", option: "Hex" },
{ string: "", option: "Hex" },
"ECB", "Raw", "Hex", "PKCS5"
]
}
]
}
]);