From dd36e30c184b029513a24cd456c931c5277fe4cb Mon Sep 17 00:00:00 2001 From: Medjedtxm Date: Sat, 10 Jan 2026 20:24:02 -0500 Subject: [PATCH 1/2] feat: add PRESENT and two fish ciphers --- src/core/config/Categories.json | 4 + src/core/lib/Present.mjs | 422 +++++++++++++++++ src/core/lib/Twofish.mjs | 608 +++++++++++++++++++++++++ src/core/operations/PRESENTDecrypt.mjs | 94 ++++ src/core/operations/PRESENTEncrypt.mjs | 94 ++++ src/core/operations/TwofishDecrypt.mjs | 94 ++++ src/core/operations/TwofishEncrypt.mjs | 94 ++++ tests/operations/index.mjs | 2 + tests/operations/tests/PRESENT.mjs | 465 +++++++++++++++++++ tests/operations/tests/Twofish.mjs | 486 ++++++++++++++++++++ 10 files changed, 2363 insertions(+) create mode 100644 src/core/lib/Present.mjs create mode 100644 src/core/lib/Twofish.mjs create mode 100644 src/core/operations/PRESENTDecrypt.mjs create mode 100644 src/core/operations/PRESENTEncrypt.mjs create mode 100644 src/core/operations/TwofishDecrypt.mjs create mode 100644 src/core/operations/TwofishEncrypt.mjs create mode 100644 tests/operations/tests/PRESENT.mjs create mode 100644 tests/operations/tests/Twofish.mjs diff --git a/src/core/config/Categories.json b/src/core/config/Categories.json index 434c8bb6..ca69c12a 100644 --- a/src/core/config/Categories.json +++ b/src/core/config/Categories.json @@ -107,6 +107,10 @@ "Rabbit", "SM4 Encrypt", "SM4 Decrypt", + "PRESENT Encrypt", + "PRESENT Decrypt", + "Twofish Encrypt", + "Twofish Decrypt", "GOST Encrypt", "GOST Decrypt", "GOST Sign", diff --git a/src/core/lib/Present.mjs b/src/core/lib/Present.mjs new file mode 100644 index 00000000..72f8e9ef --- /dev/null +++ b/src/core/lib/Present.mjs @@ -0,0 +1,422 @@ +/** + * Complete implementation of PRESENT block cipher encryption/decryption with + * ECB and CBC block modes. + * + * PRESENT is an ultra-lightweight block cipher designed for constrained environments. + * Standardized in ISO/IEC 29192-2:2019. + * + * Reference: "PRESENT: An Ultra-Lightweight Block Cipher" + * https://link.springer.com/chapter/10.1007/978-3-540-74735-2_31 + * + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import OperationError from "../errors/OperationError.mjs"; + +/** Number of rounds */ +const NROUNDS = 31; + +/** Block size in bytes (64 bits) */ +const BLOCKSIZE = 8; + +/** The 4-bit S-box (16 values) */ +const SBOX = [ + 0xC, 0x5, 0x6, 0xB, 0x9, 0x0, 0xA, 0xD, + 0x3, 0xE, 0xF, 0x8, 0x4, 0x7, 0x1, 0x2 +]; + +/** Inverse S-box for decryption */ +const SBOX_INV = [ + 0x5, 0xE, 0xF, 0x8, 0xC, 0x1, 0x2, 0xD, + 0xB, 0x4, 0x6, 0x3, 0x0, 0x7, 0x9, 0xA +]; + +/** P-layer permutation table (bit i goes to position P[i]) */ +const PBOX = [ + 0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51, + 4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55, + 8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59, + 12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47, 63 +]; + +/** Inverse P-layer permutation for decryption */ +const PBOX_INV = new Array(64); +for (let i = 0; i < 64; i++) { + PBOX_INV[PBOX[i]] = i; +} + +/** + * Convert byte array to BigInt (big-endian) + * @param {number[]} bytes - Array of bytes + * @returns {bigint} - 64-bit value as BigInt + */ +function bytesToBigInt(bytes) { + let result = 0n; + for (let i = 0; i < bytes.length; i++) { + result = (result << 8n) | BigInt(bytes[i]); + } + return result; +} + +/** + * Convert BigInt to byte array (big-endian) + * @param {bigint} value - BigInt value + * @param {number} length - Desired byte array length + * @returns {number[]} - Array of bytes + */ +function bigIntToBytes(value, length) { + const bytes = []; + for (let i = length - 1; i >= 0; i--) { + bytes[i] = Number(value & 0xFFn); + value >>= 8n; + } + return bytes; +} + +/** + * Apply S-box substitution layer to 64-bit state + * @param {bigint} state - 64-bit state + * @param {number[]} sbox - S-box to use + * @returns {bigint} - Substituted state + */ +function sBoxLayer(state, sbox) { + let result = 0n; + for (let i = 0; i < 16; i++) { + const nibble = Number((state >> BigInt(i * 4)) & 0xFn); + result |= BigInt(sbox[nibble]) << BigInt(i * 4); + } + return result; +} + +/** + * Apply P-layer permutation to 64-bit state + * @param {bigint} state - 64-bit state + * @param {number[]} pbox - Permutation table to use + * @returns {bigint} - Permuted state + */ +function pLayer(state, pbox) { + let result = 0n; + for (let i = 0; i < 64; i++) { + if ((state >> BigInt(i)) & 1n) { + result |= 1n << BigInt(pbox[i]); + } + } + return result; +} + +/** + * Generate round keys for 80-bit key + * @param {number[]} key - 10-byte key + * @returns {bigint[]} - Array of 32 round keys (64-bit each) + */ +function generateRoundKeys80(key) { + // Key register is 80 bits + let keyReg = bytesToBigInt(key); + const roundKeys = []; + + for (let i = 1; i <= NROUNDS + 1; i++) { + // Extract round key (leftmost 64 bits) + roundKeys.push(keyReg >> 16n); + + // Rotate left by 61 positions + keyReg = ((keyReg << 61n) | (keyReg >> 19n)) & ((1n << 80n) - 1n); + + // Apply S-box to leftmost 4 bits + const leftNibble = Number(keyReg >> 76n); + keyReg = (keyReg & ((1n << 76n) - 1n)) | (BigInt(SBOX[leftNibble]) << 76n); + + // XOR round counter to bits 19-15 + keyReg ^= BigInt(i) << 15n; + } + + return roundKeys; +} + +/** + * Generate round keys for 128-bit key + * @param {number[]} key - 16-byte key + * @returns {bigint[]} - Array of 32 round keys (64-bit each) + */ +function generateRoundKeys128(key) { + // Key register is 128 bits + let keyReg = bytesToBigInt(key); + const roundKeys = []; + + for (let i = 1; i <= NROUNDS + 1; i++) { + // Extract round key (leftmost 64 bits) + roundKeys.push(keyReg >> 64n); + + // Rotate left by 61 positions + keyReg = ((keyReg << 61n) | (keyReg >> 67n)) & ((1n << 128n) - 1n); + + // Apply S-box to leftmost 8 bits (two nibbles: bits 127-124 and 123-120) + const leftByte = Number((keyReg >> 120n) & 0xFFn); + const leftNibble1 = (leftByte >> 4) & 0xF; // bits 127-124 + const leftNibble2 = leftByte & 0xF; // bits 123-120 + keyReg = (keyReg & ((1n << 120n) - 1n)) | + (BigInt((SBOX[leftNibble1] << 4) | SBOX[leftNibble2]) << 120n); + + // XOR round counter to bits 66-62 + keyReg ^= BigInt(i) << 62n; + } + + return roundKeys; +} + +/** + * Encrypt a single 64-bit block + * @param {bigint} block - 64-bit plaintext block + * @param {bigint[]} roundKeys - Round keys + * @returns {bigint} - 64-bit ciphertext block + */ +function encryptBlock(block, roundKeys) { + let state = block; + + for (let i = 0; i < NROUNDS; i++) { + // Add round key + state ^= roundKeys[i]; + // S-box layer + state = sBoxLayer(state, SBOX); + // P-layer + state = pLayer(state, PBOX); + } + + // Final round key addition + state ^= roundKeys[NROUNDS]; + + return state; +} + +/** + * Decrypt a single 64-bit block + * @param {bigint} block - 64-bit ciphertext block + * @param {bigint[]} roundKeys - Round keys + * @returns {bigint} - 64-bit plaintext block + */ +function decryptBlock(block, roundKeys) { + let state = block; + + // Reverse key addition + state ^= roundKeys[NROUNDS]; + + for (let i = NROUNDS - 1; i >= 0; i--) { + // Inverse P-layer + state = pLayer(state, PBOX_INV); + // Inverse S-box layer + state = sBoxLayer(state, SBOX_INV); + // Add round key + state ^= roundKeys[i]; + } + + return state; +} + +/** + * Apply padding to message + * @param {number[]} message - Original message + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @param {number} blockSize - Block size in bytes + * @returns {number[]} - Padded message + */ +function applyPadding(message, padding, blockSize) { + const remainder = message.length % blockSize; + let nPadding = remainder === 0 ? 0 : blockSize - remainder; + + // For PKCS5, always add at least one byte (full block if already aligned) + if (padding === "PKCS5" && remainder === 0) { + nPadding = blockSize; + } + + if (nPadding === 0) return [...message]; + + const paddedMessage = [...message]; + + switch (padding) { + case "NO": + throw new OperationError(`No padding requested but input is not a ${blockSize}-byte multiple.`); + + case "PKCS5": + for (let i = 0; i < nPadding; i++) { + paddedMessage.push(nPadding); + } + break; + + case "ZERO": + for (let i = 0; i < nPadding; i++) { + paddedMessage.push(0); + } + break; + + case "RANDOM": + for (let i = 0; i < nPadding; i++) { + paddedMessage.push(Math.floor(Math.random() * 256)); + } + break; + + case "BIT": + paddedMessage.push(0x80); + for (let i = 1; i < nPadding; i++) { + paddedMessage.push(0); + } + break; + + default: + throw new OperationError(`Unknown padding type: ${padding}`); + } + + return paddedMessage; +} + +/** + * Remove padding from message + * @param {number[]} message - Padded message + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @param {number} blockSize - Block size in bytes + * @returns {number[]} - Unpadded message + */ +function removePadding(message, padding, blockSize) { + if (message.length === 0) return message; + + switch (padding) { + case "NO": + case "ZERO": + case "RANDOM": + // These padding types cannot be reliably removed + return message; + + case "PKCS5": { + const padByte = message[message.length - 1]; + if (padByte > 0 && padByte <= blockSize) { + // Verify padding + for (let i = 0; i < padByte; i++) { + if (message[message.length - 1 - i] !== padByte) { + throw new OperationError("Invalid PKCS#5 padding."); + } + } + return message.slice(0, message.length - padByte); + } + throw new OperationError("Invalid PKCS#5 padding."); + } + + case "BIT": { + // Find 0x80 byte working backwards, skipping zeros + for (let i = message.length - 1; i >= 0; i--) { + if (message[i] === 0x80) { + return message.slice(0, i); + } else if (message[i] !== 0) { + throw new OperationError("Invalid BIT padding."); + } + } + throw new OperationError("Invalid BIT padding."); + } + + default: + throw new OperationError(`Unknown padding type: ${padding}`); + } +} + +/** + * Encrypt using PRESENT cipher with specified block mode + * + * @param {number[]} message - Plaintext as byte array + * @param {number[]} key - Key (10 bytes for 80-bit or 16 bytes for 128-bit) + * @param {number[]} iv - IV (8 bytes, not used for ECB) + * @param {string} mode - Block cipher mode ("ECB" or "CBC") + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @returns {number[]} - Ciphertext as byte array + */ +export function encryptPRESENT(message, key, iv, mode = "ECB", padding = "PKCS5") { + if (message.length === 0) return []; + + // Generate round keys based on key length + const roundKeys = key.length === 10 ? + generateRoundKeys80(key) : + generateRoundKeys128(key); + + // Apply padding + const paddedMessage = applyPadding(message, padding, BLOCKSIZE); + + const cipherText = []; + + switch (mode) { + case "ECB": + for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) { + const block = bytesToBigInt(paddedMessage.slice(i, i + BLOCKSIZE)); + const encrypted = encryptBlock(block, roundKeys); + cipherText.push(...bigIntToBytes(encrypted, BLOCKSIZE)); + } + break; + + case "CBC": { + let ivBlock = bytesToBigInt(iv); + for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) { + let block = bytesToBigInt(paddedMessage.slice(i, i + BLOCKSIZE)); + block ^= ivBlock; + const encrypted = encryptBlock(block, roundKeys); + cipherText.push(...bigIntToBytes(encrypted, BLOCKSIZE)); + ivBlock = encrypted; + } + break; + } + + default: + throw new OperationError(`Invalid block cipher mode: ${mode}`); + } + + return cipherText; +} + +/** + * Decrypt using PRESENT cipher with specified block mode + * + * @param {number[]} cipherText - Ciphertext as byte array + * @param {number[]} key - Key (10 bytes for 80-bit or 16 bytes for 128-bit) + * @param {number[]} iv - IV (8 bytes, not used for ECB) + * @param {string} mode - Block cipher mode ("ECB" or "CBC") + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @returns {number[]} - Plaintext as byte array + */ +export function decryptPRESENT(cipherText, key, iv, mode = "ECB", padding = "PKCS5") { + if (cipherText.length === 0) return []; + + if (cipherText.length % BLOCKSIZE !== 0) { + throw new OperationError(`Invalid ciphertext length: ${cipherText.length} bytes. Must be a multiple of 8.`); + } + + // Generate round keys based on key length + const roundKeys = key.length === 10 ? + generateRoundKeys80(key) : + generateRoundKeys128(key); + + const plainText = []; + + switch (mode) { + case "ECB": + for (let i = 0; i < cipherText.length; i += BLOCKSIZE) { + const block = bytesToBigInt(cipherText.slice(i, i + BLOCKSIZE)); + const decrypted = decryptBlock(block, roundKeys); + plainText.push(...bigIntToBytes(decrypted, BLOCKSIZE)); + } + break; + + case "CBC": { + let ivBlock = bytesToBigInt(iv); + for (let i = 0; i < cipherText.length; i += BLOCKSIZE) { + const block = bytesToBigInt(cipherText.slice(i, i + BLOCKSIZE)); + let decrypted = decryptBlock(block, roundKeys); + decrypted ^= ivBlock; + plainText.push(...bigIntToBytes(decrypted, BLOCKSIZE)); + ivBlock = block; + } + break; + } + + default: + throw new OperationError(`Invalid block cipher mode: ${mode}`); + } + + // Remove padding + return removePadding(plainText, padding, BLOCKSIZE); +} diff --git a/src/core/lib/Twofish.mjs b/src/core/lib/Twofish.mjs new file mode 100644 index 00000000..2654df40 --- /dev/null +++ b/src/core/lib/Twofish.mjs @@ -0,0 +1,608 @@ +/** + * Complete implementation of Twofish block cipher encryption/decryption with + * ECB, CBC, CFB, OFB, CTR block modes. + * + * Twofish was an AES finalist designed by Bruce Schneier et al. + * Reference: https://www.schneier.com/academic/twofish/ + * + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import OperationError from "../errors/OperationError.mjs"; + +/** Number of rounds */ +const NROUNDS = 16; + +/** Block size in bytes (128 bits) */ +const BLOCKSIZE = 16; + +/** Q0 permutation */ +const Q0 = [ + 0xa9, 0x67, 0xb3, 0xe8, 0x04, 0xfd, 0xa3, 0x76, 0x9a, 0x92, 0x80, 0x78, 0xe4, 0xdd, 0xd1, 0x38, + 0x0d, 0xc6, 0x35, 0x98, 0x18, 0xf7, 0xec, 0x6c, 0x43, 0x75, 0x37, 0x26, 0xfa, 0x13, 0x94, 0x48, + 0xf2, 0xd0, 0x8b, 0x30, 0x84, 0x54, 0xdf, 0x23, 0x19, 0x5b, 0x3d, 0x59, 0xf3, 0xae, 0xa2, 0x82, + 0x63, 0x01, 0x83, 0x2e, 0xd9, 0x51, 0x9b, 0x7c, 0xa6, 0xeb, 0xa5, 0xbe, 0x16, 0x0c, 0xe3, 0x61, + 0xc0, 0x8c, 0x3a, 0xf5, 0x73, 0x2c, 0x25, 0x0b, 0xbb, 0x4e, 0x89, 0x6b, 0x53, 0x6a, 0xb4, 0xf1, + 0xe1, 0xe6, 0xbd, 0x45, 0xe2, 0xf4, 0xb6, 0x66, 0xcc, 0x95, 0x03, 0x56, 0xd4, 0x1c, 0x1e, 0xd7, + 0xfb, 0xc3, 0x8e, 0xb5, 0xe9, 0xcf, 0xbf, 0xba, 0xea, 0x77, 0x39, 0xaf, 0x33, 0xc9, 0x62, 0x71, + 0x81, 0x79, 0x09, 0xad, 0x24, 0xcd, 0xf9, 0xd8, 0xe5, 0xc5, 0xb9, 0x4d, 0x44, 0x08, 0x86, 0xe7, + 0xa1, 0x1d, 0xaa, 0xed, 0x06, 0x70, 0xb2, 0xd2, 0x41, 0x7b, 0xa0, 0x11, 0x31, 0xc2, 0x27, 0x90, + 0x20, 0xf6, 0x60, 0xff, 0x96, 0x5c, 0xb1, 0xab, 0x9e, 0x9c, 0x52, 0x1b, 0x5f, 0x93, 0x0a, 0xef, + 0x91, 0x85, 0x49, 0xee, 0x2d, 0x4f, 0x8f, 0x3b, 0x47, 0x87, 0x6d, 0x46, 0xd6, 0x3e, 0x69, 0x64, + 0x2a, 0xce, 0xcb, 0x2f, 0xfc, 0x97, 0x05, 0x7a, 0xac, 0x7f, 0xd5, 0x1a, 0x4b, 0x0e, 0xa7, 0x5a, + 0x28, 0x14, 0x3f, 0x29, 0x88, 0x3c, 0x4c, 0x02, 0xb8, 0xda, 0xb0, 0x17, 0x55, 0x1f, 0x8a, 0x7d, + 0x57, 0xc7, 0x8d, 0x74, 0xb7, 0xc4, 0x9f, 0x72, 0x7e, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, + 0x6e, 0x50, 0xde, 0x68, 0x65, 0xbc, 0xdb, 0xf8, 0xc8, 0xa8, 0x2b, 0x40, 0xdc, 0xfe, 0x32, 0xa4, + 0xca, 0x10, 0x21, 0xf0, 0xd3, 0x5d, 0x0f, 0x00, 0x6f, 0x9d, 0x36, 0x42, 0x4a, 0x5e, 0xc1, 0xe0 +]; + +/** Q1 permutation */ +const Q1 = [ + 0x75, 0xf3, 0xc6, 0xf4, 0xdb, 0x7b, 0xfb, 0xc8, 0x4a, 0xd3, 0xe6, 0x6b, 0x45, 0x7d, 0xe8, 0x4b, + 0xd6, 0x32, 0xd8, 0xfd, 0x37, 0x71, 0xf1, 0xe1, 0x30, 0x0f, 0xf8, 0x1b, 0x87, 0xfa, 0x06, 0x3f, + 0x5e, 0xba, 0xae, 0x5b, 0x8a, 0x00, 0xbc, 0x9d, 0x6d, 0xc1, 0xb1, 0x0e, 0x80, 0x5d, 0xd2, 0xd5, + 0xa0, 0x84, 0x07, 0x14, 0xb5, 0x90, 0x2c, 0xa3, 0xb2, 0x73, 0x4c, 0x54, 0x92, 0x74, 0x36, 0x51, + 0x38, 0xb0, 0xbd, 0x5a, 0xfc, 0x60, 0x62, 0x96, 0x6c, 0x42, 0xf7, 0x10, 0x7c, 0x28, 0x27, 0x8c, + 0x13, 0x95, 0x9c, 0xc7, 0x24, 0x46, 0x3b, 0x70, 0xca, 0xe3, 0x85, 0xcb, 0x11, 0xd0, 0x93, 0xb8, + 0xa6, 0x83, 0x20, 0xff, 0x9f, 0x77, 0xc3, 0xcc, 0x03, 0x6f, 0x08, 0xbf, 0x40, 0xe7, 0x2b, 0xe2, + 0x79, 0x0c, 0xaa, 0x82, 0x41, 0x3a, 0xea, 0xb9, 0xe4, 0x9a, 0xa4, 0x97, 0x7e, 0xda, 0x7a, 0x17, + 0x66, 0x94, 0xa1, 0x1d, 0x3d, 0xf0, 0xde, 0xb3, 0x0b, 0x72, 0xa7, 0x1c, 0xef, 0xd1, 0x53, 0x3e, + 0x8f, 0x33, 0x26, 0x5f, 0xec, 0x76, 0x2a, 0x49, 0x81, 0x88, 0xee, 0x21, 0xc4, 0x1a, 0xeb, 0xd9, + 0xc5, 0x39, 0x99, 0xcd, 0xad, 0x31, 0x8b, 0x01, 0x18, 0x23, 0xdd, 0x1f, 0x4e, 0x2d, 0xf9, 0x48, + 0x4f, 0xf2, 0x65, 0x8e, 0x78, 0x5c, 0x58, 0x19, 0x8d, 0xe5, 0x98, 0x57, 0x67, 0x7f, 0x05, 0x64, + 0xaf, 0x63, 0xb6, 0xfe, 0xf5, 0xb7, 0x3c, 0xa5, 0xce, 0xe9, 0x68, 0x44, 0xe0, 0x4d, 0x43, 0x69, + 0x29, 0x2e, 0xac, 0x15, 0x59, 0xa8, 0x0a, 0x9e, 0x6e, 0x47, 0xdf, 0x34, 0x35, 0x6a, 0xcf, 0xdc, + 0x22, 0xc9, 0xc0, 0x9b, 0x89, 0xd4, 0xed, 0xab, 0x12, 0xa2, 0x0d, 0x52, 0xbb, 0x02, 0x2f, 0xa9, + 0xd7, 0x61, 0x1e, 0xb4, 0x50, 0x04, 0xf6, 0xc2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xbe, 0x91 +]; + +/** Reed-Solomon matrix for key schedule */ +const RS = [ + [0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E], + [0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5], + [0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19], + [0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03] +]; + +/** + * Galois Field multiplication in GF(2^8) with polynomial 0x169 + */ +function gfMult(a, b, poly) { + let result = 0; + while (b) { + if (b & 1) result ^= a; + a <<= 1; + if (a & 0x100) a ^= poly; + b >>>= 1; + } + return result & 0xFF; +} + +/** + * MDS multiplication + */ +function mdsMultiply(x) { + const b0 = x & 0xFF; + const b1 = (x >>> 8) & 0xFF; + const b2 = (x >>> 16) & 0xFF; + const b3 = (x >>> 24) & 0xFF; + + // MDS matrix multiplication in GF(2^8) with polynomial 0x169 + const r0 = gfMult(b0, 0x01, 0x169) ^ gfMult(b1, 0xEF, 0x169) ^ gfMult(b2, 0x5B, 0x169) ^ gfMult(b3, 0x5B, 0x169); + const r1 = gfMult(b0, 0x5B, 0x169) ^ gfMult(b1, 0xEF, 0x169) ^ gfMult(b2, 0xEF, 0x169) ^ gfMult(b3, 0x01, 0x169); + const r2 = gfMult(b0, 0xEF, 0x169) ^ gfMult(b1, 0x5B, 0x169) ^ gfMult(b2, 0x01, 0x169) ^ gfMult(b3, 0xEF, 0x169); + const r3 = gfMult(b0, 0xEF, 0x169) ^ gfMult(b1, 0x01, 0x169) ^ gfMult(b2, 0xEF, 0x169) ^ gfMult(b3, 0x5B, 0x169); + + return (r3 << 24) | (r2 << 16) | (r1 << 8) | r0; +} + +/** + * Reed-Solomon multiplication for key schedule + */ +function rsMultiply(key8) { + let result = 0; + for (let i = 0; i < 4; i++) { + let x = 0; + for (let j = 0; j < 8; j++) { + x ^= gfMult(RS[i][j], key8[j], 0x14D); + } + result |= x << (i * 8); + } + return result; +} + +/** + * Apply h function (the main keyed permutation) + */ +function h(x, L, k) { + const y = new Array(4); + y[0] = x & 0xFF; + y[1] = (x >>> 8) & 0xFF; + y[2] = (x >>> 16) & 0xFF; + y[3] = (x >>> 24) & 0xFF; + + if (k === 4) { + y[0] = Q1[y[0]] ^ (L[3] & 0xFF); + y[1] = Q0[y[1]] ^ ((L[3] >>> 8) & 0xFF); + y[2] = Q0[y[2]] ^ ((L[3] >>> 16) & 0xFF); + y[3] = Q1[y[3]] ^ ((L[3] >>> 24) & 0xFF); + } + if (k >= 3) { + y[0] = Q1[y[0]] ^ (L[2] & 0xFF); + y[1] = Q1[y[1]] ^ ((L[2] >>> 8) & 0xFF); + y[2] = Q0[y[2]] ^ ((L[2] >>> 16) & 0xFF); + y[3] = Q0[y[3]] ^ ((L[2] >>> 24) & 0xFF); + } + + // Always do k >= 2 + y[0] = Q0[Q0[y[0]] ^ (L[1] & 0xFF)] ^ (L[0] & 0xFF); + y[1] = Q0[Q1[y[1]] ^ ((L[1] >>> 8) & 0xFF)] ^ ((L[0] >>> 8) & 0xFF); + y[2] = Q1[Q0[y[2]] ^ ((L[1] >>> 16) & 0xFF)] ^ ((L[0] >>> 16) & 0xFF); + y[3] = Q1[Q1[y[3]] ^ ((L[1] >>> 24) & 0xFF)] ^ ((L[0] >>> 24) & 0xFF); + + // Final q-box lookup + y[0] = Q1[y[0]]; + y[1] = Q0[y[1]]; + y[2] = Q1[y[2]]; + y[3] = Q0[y[3]]; + + return mdsMultiply((y[3] << 24) | (y[2] << 16) | (y[1] << 8) | y[0]); +} + +/** + * Rotate left 32-bit + */ +function ROL(x, n) { + return ((x << n) | (x >>> (32 - n))) >>> 0; +} + +/** + * Rotate right 32-bit + */ +function ROR(x, n) { + return ((x >>> n) | (x << (32 - n))) >>> 0; +} + +/** + * Generate subkeys from the key + */ +function generateSubkeys(key) { + const keyLen = key.length; + const k = keyLen / 8; // 2, 3, or 4 + + // Split key into Me (even words) and Mo (odd words) + const Me = new Array(k); + const Mo = new Array(k); + + for (let i = 0; i < k; i++) { + const offset = i * 8; + Me[i] = (key[offset]) | (key[offset + 1] << 8) | + (key[offset + 2] << 16) | (key[offset + 3] << 24); + Mo[i] = (key[offset + 4]) | (key[offset + 5] << 8) | + (key[offset + 6] << 16) | (key[offset + 7] << 24); + } + + // Generate S-box keys using Reed-Solomon + const S = new Array(k); + for (let i = 0; i < k; i++) { + const offset = (k - 1 - i) * 8; + S[i] = rsMultiply(key.slice(offset, offset + 8)); + } + + // Generate round subkeys + const subkeys = new Array(40); + const rho = 0x01010101; + + for (let i = 0; i < 20; i++) { + const A = h(2 * i * rho, Me, k); + const B = ROL(h((2 * i + 1) * rho, Mo, k), 8); + subkeys[2 * i] = (A + B) >>> 0; + subkeys[2 * i + 1] = ROL((A + 2 * B) >>> 0, 9); + } + + return { subkeys, S, k }; +} + +/** + * g function using precomputed S-box keys + */ +function g(x, S, k) { + return h(x, S, k); +} + +/** + * Encrypt a single 128-bit block + */ +function encryptBlock(block, keyData) { + const { subkeys, S, k } = keyData; + + // Split block into 4 words (little-endian) + let R0 = (block[0]) | (block[1] << 8) | (block[2] << 16) | (block[3] << 24); + let R1 = (block[4]) | (block[5] << 8) | (block[6] << 16) | (block[7] << 24); + let R2 = (block[8]) | (block[9] << 8) | (block[10] << 16) | (block[11] << 24); + let R3 = (block[12]) | (block[13] << 8) | (block[14] << 16) | (block[15] << 24); + + // Input whitening + R0 ^= subkeys[0]; + R1 ^= subkeys[1]; + R2 ^= subkeys[2]; + R3 ^= subkeys[3]; + + // 16 rounds + for (let r = 0; r < NROUNDS; r += 2) { + let T0 = g(R0, S, k); + let T1 = g(ROL(R1, 8), S, k); + R2 = ROR(R2 ^ ((T0 + T1 + subkeys[8 + 2 * r]) >>> 0), 1); + R3 = ROL(R3, 1) ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r]) >>> 0); + + T0 = g(R2, S, k); + T1 = g(ROL(R3, 8), S, k); + R0 = ROR(R0 ^ ((T0 + T1 + subkeys[8 + 2 * r + 2]) >>> 0), 1); + R1 = ROL(R1, 1) ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r + 2]) >>> 0); + } + + // Output whitening (with undo of last swap) + R2 ^= subkeys[4]; + R3 ^= subkeys[5]; + R0 ^= subkeys[6]; + R1 ^= subkeys[7]; + + // Convert back to bytes (little-endian) + return [ + R2 & 0xFF, (R2 >>> 8) & 0xFF, (R2 >>> 16) & 0xFF, (R2 >>> 24) & 0xFF, + R3 & 0xFF, (R3 >>> 8) & 0xFF, (R3 >>> 16) & 0xFF, (R3 >>> 24) & 0xFF, + R0 & 0xFF, (R0 >>> 8) & 0xFF, (R0 >>> 16) & 0xFF, (R0 >>> 24) & 0xFF, + R1 & 0xFF, (R1 >>> 8) & 0xFF, (R1 >>> 16) & 0xFF, (R1 >>> 24) & 0xFF + ]; +} + +/** + * Decrypt a single 128-bit block + */ +function decryptBlock(block, keyData) { + const { subkeys, S, k } = keyData; + + // Split block into 4 words (little-endian) + let R0 = (block[0]) | (block[1] << 8) | (block[2] << 16) | (block[3] << 24); + let R1 = (block[4]) | (block[5] << 8) | (block[6] << 16) | (block[7] << 24); + let R2 = (block[8]) | (block[9] << 8) | (block[10] << 16) | (block[11] << 24); + let R3 = (block[12]) | (block[13] << 8) | (block[14] << 16) | (block[15] << 24); + + // Input whitening (reverse of output whitening) + R0 ^= subkeys[4]; + R1 ^= subkeys[5]; + R2 ^= subkeys[6]; + R3 ^= subkeys[7]; + + // 16 rounds in reverse + for (let r = NROUNDS - 2; r >= 0; r -= 2) { + let T0 = g(R0, S, k); + let T1 = g(ROL(R1, 8), S, k); + R2 = ROL(R2, 1) ^ ((T0 + T1 + subkeys[8 + 2 * r + 2]) >>> 0); + R3 = ROR(R3 ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r + 2]) >>> 0), 1); + + T0 = g(R2, S, k); + T1 = g(ROL(R3, 8), S, k); + R0 = ROL(R0, 1) ^ ((T0 + T1 + subkeys[8 + 2 * r]) >>> 0); + R1 = ROR(R1 ^ ((T0 + 2 * T1 + subkeys[9 + 2 * r]) >>> 0), 1); + } + + // Output whitening (reverse of input whitening) + R2 ^= subkeys[0]; + R3 ^= subkeys[1]; + R0 ^= subkeys[2]; + R1 ^= subkeys[3]; + + // Convert back to bytes (little-endian) + return [ + R2 & 0xFF, (R2 >>> 8) & 0xFF, (R2 >>> 16) & 0xFF, (R2 >>> 24) & 0xFF, + R3 & 0xFF, (R3 >>> 8) & 0xFF, (R3 >>> 16) & 0xFF, (R3 >>> 24) & 0xFF, + R0 & 0xFF, (R0 >>> 8) & 0xFF, (R0 >>> 16) & 0xFF, (R0 >>> 24) & 0xFF, + R1 & 0xFF, (R1 >>> 8) & 0xFF, (R1 >>> 16) & 0xFF, (R1 >>> 24) & 0xFF + ]; +} + +/** + * XOR two 16-byte blocks + */ +function xorBlocks(a, b) { + const result = new Array(16); + for (let i = 0; i < 16; i++) { + result[i] = a[i] ^ b[i]; + } + return result; +} + +/** + * Increment counter (little-endian) + */ +function incrementCounter(counter) { + const result = [...counter]; + for (let i = 0; i < 16; i++) { + result[i]++; + if (result[i] <= 255) break; + result[i] = 0; + } + return result; +} + +/** + * Apply padding to message + * @param {number[]} message - Original message + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @param {number} blockSize - Block size in bytes + * @returns {number[]} - Padded message + */ +function applyPadding(message, padding, blockSize) { + const remainder = message.length % blockSize; + let nPadding = remainder === 0 ? 0 : blockSize - remainder; + + // For PKCS5, always add at least one byte (full block if already aligned) + if (padding === "PKCS5" && remainder === 0) { + nPadding = blockSize; + } + + if (nPadding === 0) return [...message]; + + const paddedMessage = [...message]; + + switch (padding) { + case "NO": + throw new OperationError(`No padding requested but input is not a ${blockSize}-byte multiple.`); + + case "PKCS5": + for (let i = 0; i < nPadding; i++) { + paddedMessage.push(nPadding); + } + break; + + case "ZERO": + for (let i = 0; i < nPadding; i++) { + paddedMessage.push(0); + } + break; + + case "RANDOM": + for (let i = 0; i < nPadding; i++) { + paddedMessage.push(Math.floor(Math.random() * 256)); + } + break; + + case "BIT": + paddedMessage.push(0x80); + for (let i = 1; i < nPadding; i++) { + paddedMessage.push(0); + } + break; + + default: + throw new OperationError(`Unknown padding type: ${padding}`); + } + + return paddedMessage; +} + +/** + * Remove padding from message + * @param {number[]} message - Padded message + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @param {number} blockSize - Block size in bytes + * @returns {number[]} - Unpadded message + */ +function removePadding(message, padding, blockSize) { + if (message.length === 0) return message; + + switch (padding) { + case "NO": + case "ZERO": + case "RANDOM": + // These padding types cannot be reliably removed + return message; + + case "PKCS5": { + const padByte = message[message.length - 1]; + if (padByte > 0 && padByte <= blockSize) { + // Verify padding + for (let i = 0; i < padByte; i++) { + if (message[message.length - 1 - i] !== padByte) { + throw new OperationError("Invalid PKCS#5 padding."); + } + } + return message.slice(0, message.length - padByte); + } + throw new OperationError("Invalid PKCS#5 padding."); + } + + case "BIT": { + // Find 0x80 byte working backwards, skipping zeros + for (let i = message.length - 1; i >= 0; i--) { + if (message[i] === 0x80) { + return message.slice(0, i); + } else if (message[i] !== 0) { + throw new OperationError("Invalid BIT padding."); + } + } + throw new OperationError("Invalid BIT padding."); + } + + default: + throw new OperationError(`Unknown padding type: ${padding}`); + } +} + +/** + * Encrypt using Twofish cipher with specified block mode + * + * @param {number[]} message - Plaintext as byte array + * @param {number[]} key - Key (16, 24, or 32 bytes) + * @param {number[]} iv - IV (16 bytes, not used for ECB) + * @param {string} mode - Block cipher mode ("ECB", "CBC", "CFB", "OFB", "CTR") + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @returns {number[]} - Ciphertext as byte array + */ +export function encryptTwofish(message, key, iv, mode = "ECB", padding = "PKCS5") { + const messageLength = message.length; + if (messageLength === 0) return []; + + const keyData = generateSubkeys(key); + + // Apply padding for ECB/CBC modes + let paddedMessage; + if (mode === "ECB" || mode === "CBC") { + paddedMessage = applyPadding(message, padding, BLOCKSIZE); + } else { + // Stream modes (CFB, OFB, CTR) don't need padding + paddedMessage = [...message]; + } + + const cipherText = []; + + switch (mode) { + case "ECB": + for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) { + const block = paddedMessage.slice(i, i + BLOCKSIZE); + cipherText.push(...encryptBlock(block, keyData)); + } + break; + + case "CBC": { + let ivBlock = [...iv]; + for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) { + const block = paddedMessage.slice(i, i + BLOCKSIZE); + const xored = xorBlocks(block, ivBlock); + ivBlock = encryptBlock(xored, keyData); + cipherText.push(...ivBlock); + } + break; + } + + case "CFB": { + let ivBlock = [...iv]; + for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) { + const encrypted = encryptBlock(ivBlock, keyData); + const block = paddedMessage.slice(i, i + BLOCKSIZE); + ivBlock = xorBlocks(encrypted, block); + cipherText.push(...ivBlock); + } + return cipherText.slice(0, messageLength); + } + + case "OFB": { + let ivBlock = [...iv]; + for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) { + ivBlock = encryptBlock(ivBlock, keyData); + const block = paddedMessage.slice(i, i + BLOCKSIZE); + cipherText.push(...xorBlocks(ivBlock, block)); + } + return cipherText.slice(0, messageLength); + } + + case "CTR": { + let counter = [...iv]; + for (let i = 0; i < paddedMessage.length; i += BLOCKSIZE) { + const encrypted = encryptBlock(counter, keyData); + const block = paddedMessage.slice(i, i + BLOCKSIZE); + cipherText.push(...xorBlocks(encrypted, block)); + counter = incrementCounter(counter); + } + return cipherText.slice(0, messageLength); + } + + default: + throw new OperationError(`Invalid block cipher mode: ${mode}`); + } + + return cipherText; +} + +/** + * Decrypt using Twofish cipher with specified block mode + * + * @param {number[]} cipherText - Ciphertext as byte array + * @param {number[]} key - Key (16, 24, or 32 bytes) + * @param {number[]} iv - IV (16 bytes, not used for ECB) + * @param {string} mode - Block cipher mode ("ECB", "CBC", "CFB", "OFB", "CTR") + * @param {string} padding - Padding type ("NO", "PKCS5", "ZERO", "RANDOM", "BIT") + * @returns {number[]} - Plaintext as byte array + */ +export function decryptTwofish(cipherText, key, iv, mode = "ECB", padding = "PKCS5") { + const originalLength = cipherText.length; + if (originalLength === 0) return []; + + const keyData = generateSubkeys(key); + + if (mode === "ECB" || mode === "CBC") { + if ((originalLength % BLOCKSIZE) !== 0) + throw new OperationError(`Invalid ciphertext length: ${originalLength} bytes. Must be a multiple of 16.`); + } else { + // Pad for stream modes + while ((cipherText.length % BLOCKSIZE) !== 0) + cipherText.push(0); + } + + const plainText = []; + + switch (mode) { + case "ECB": + for (let i = 0; i < cipherText.length; i += BLOCKSIZE) { + const block = cipherText.slice(i, i + BLOCKSIZE); + plainText.push(...decryptBlock(block, keyData)); + } + break; + + case "CBC": { + let ivBlock = [...iv]; + for (let i = 0; i < cipherText.length; i += BLOCKSIZE) { + const block = cipherText.slice(i, i + BLOCKSIZE); + const decrypted = decryptBlock(block, keyData); + plainText.push(...xorBlocks(decrypted, ivBlock)); + ivBlock = block; + } + break; + } + + case "CFB": { + let ivBlock = [...iv]; + for (let i = 0; i < cipherText.length; i += BLOCKSIZE) { + const encrypted = encryptBlock(ivBlock, keyData); + const block = cipherText.slice(i, i + BLOCKSIZE); + plainText.push(...xorBlocks(encrypted, block)); + ivBlock = block; + } + return plainText.slice(0, originalLength); + } + + case "OFB": { + let ivBlock = [...iv]; + for (let i = 0; i < cipherText.length; i += BLOCKSIZE) { + ivBlock = encryptBlock(ivBlock, keyData); + const block = cipherText.slice(i, i + BLOCKSIZE); + plainText.push(...xorBlocks(ivBlock, block)); + } + return plainText.slice(0, originalLength); + } + + case "CTR": { + let counter = [...iv]; + for (let i = 0; i < cipherText.length; i += BLOCKSIZE) { + const encrypted = encryptBlock(counter, keyData); + const block = cipherText.slice(i, i + BLOCKSIZE); + plainText.push(...xorBlocks(encrypted, block)); + counter = incrementCounter(counter); + } + return plainText.slice(0, originalLength); + } + + default: + throw new OperationError(`Invalid block cipher mode: ${mode}`); + } + + // Remove padding for ECB/CBC modes + if (mode === "ECB" || mode === "CBC") { + return removePadding(plainText, padding, BLOCKSIZE); + } + + return plainText.slice(0, originalLength); +} diff --git a/src/core/operations/PRESENTDecrypt.mjs b/src/core/operations/PRESENTDecrypt.mjs new file mode 100644 index 00000000..16629c51 --- /dev/null +++ b/src/core/operations/PRESENTDecrypt.mjs @@ -0,0 +1,94 @@ +/** + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import Operation from "../Operation.mjs"; +import Utils from "../Utils.mjs"; +import OperationError from "../errors/OperationError.mjs"; +import { toHex } from "../lib/Hex.mjs"; +import { decryptPRESENT } from "../lib/Present.mjs"; + +/** + * PRESENT Decrypt operation + */ +class PRESENTDecrypt extends Operation { + + /** + * PRESENTDecrypt constructor + */ + constructor() { + super(); + + this.name = "PRESENT Decrypt"; + this.module = "Ciphers"; + this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardized in ISO/IEC 29192-2:2019.

When using CBC mode, the PKCS#7 padding scheme is used."; + this.infoURL = "https://wikipedia.org/wiki/PRESENT_(cipher)"; + this.inputType = "string"; + this.outputType = "string"; + this.args = [ + { + "name": "Key", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "IV", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "Mode", + "type": "option", + "value": ["CBC", "ECB"] + }, + { + "name": "Input", + "type": "option", + "value": ["Hex", "Raw"] + }, + { + "name": "Output", + "type": "option", + "value": ["Raw", "Hex"] + }, + { + "name": "Padding", + "type": "option", + "value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"] + } + ]; + } + + /** + * @param {string} input + * @param {Object[]} args + * @returns {string} + */ + run(input, args) { + const key = Utils.convertToByteArray(args[0].string, args[0].option), + iv = Utils.convertToByteArray(args[1].string, args[1].option), + [,, mode, inputType, outputType, padding] = args; + + if (key.length !== 10 && key.length !== 16) + throw new OperationError(`Invalid key length: ${key.length} bytes + +PRESENT uses a key length of 10 bytes (80 bits) or 16 bytes (128 bits).`); + + if (iv.length !== 8 && mode !== "ECB") + throw new OperationError(`Invalid IV length: ${iv.length} bytes + +PRESENT uses an IV length of 8 bytes (64 bits). +Make sure you have specified the type correctly (e.g. Hex vs UTF8).`); + + input = Utils.convertToByteArray(input, inputType); + const output = decryptPRESENT(input, key, iv, mode, padding); + return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output); + } + +} + +export default PRESENTDecrypt; diff --git a/src/core/operations/PRESENTEncrypt.mjs b/src/core/operations/PRESENTEncrypt.mjs new file mode 100644 index 00000000..f5d82aad --- /dev/null +++ b/src/core/operations/PRESENTEncrypt.mjs @@ -0,0 +1,94 @@ +/** + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import Operation from "../Operation.mjs"; +import Utils from "../Utils.mjs"; +import OperationError from "../errors/OperationError.mjs"; +import { toHex } from "../lib/Hex.mjs"; +import { encryptPRESENT } from "../lib/Present.mjs"; + +/** + * PRESENT Encrypt operation + */ +class PRESENTEncrypt extends Operation { + + /** + * PRESENTEncrypt constructor + */ + constructor() { + super(); + + this.name = "PRESENT Encrypt"; + this.module = "Ciphers"; + this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardized in ISO/IEC 29192-2:2019.

When using CBC mode, the PKCS#7 padding scheme is used."; + this.infoURL = "https://wikipedia.org/wiki/PRESENT_(cipher)"; + this.inputType = "string"; + this.outputType = "string"; + this.args = [ + { + "name": "Key", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "IV", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "Mode", + "type": "option", + "value": ["CBC", "ECB"] + }, + { + "name": "Input", + "type": "option", + "value": ["Raw", "Hex"] + }, + { + "name": "Output", + "type": "option", + "value": ["Hex", "Raw"] + }, + { + "name": "Padding", + "type": "option", + "value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"] + } + ]; + } + + /** + * @param {string} input + * @param {Object[]} args + * @returns {string} + */ + run(input, args) { + const key = Utils.convertToByteArray(args[0].string, args[0].option), + iv = Utils.convertToByteArray(args[1].string, args[1].option), + [,, mode, inputType, outputType, padding] = args; + + if (key.length !== 10 && key.length !== 16) + throw new OperationError(`Invalid key length: ${key.length} bytes + +PRESENT uses a key length of 10 bytes (80 bits) or 16 bytes (128 bits).`); + + if (iv.length !== 8 && mode !== "ECB") + throw new OperationError(`Invalid IV length: ${iv.length} bytes + +PRESENT uses an IV length of 8 bytes (64 bits). +Make sure you have specified the type correctly (e.g. Hex vs UTF8).`); + + input = Utils.convertToByteArray(input, inputType); + const output = encryptPRESENT(input, key, iv, mode, padding); + return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output); + } + +} + +export default PRESENTEncrypt; diff --git a/src/core/operations/TwofishDecrypt.mjs b/src/core/operations/TwofishDecrypt.mjs new file mode 100644 index 00000000..6d5d033c --- /dev/null +++ b/src/core/operations/TwofishDecrypt.mjs @@ -0,0 +1,94 @@ +/** + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import Operation from "../Operation.mjs"; +import Utils from "../Utils.mjs"; +import OperationError from "../errors/OperationError.mjs"; +import { toHex } from "../lib/Hex.mjs"; +import { decryptTwofish } from "../lib/Twofish.mjs"; + +/** + * Twofish Decrypt operation + */ +class TwofishDecrypt extends Operation { + + /** + * TwofishDecrypt constructor + */ + constructor() { + super(); + + this.name = "Twofish Decrypt"; + this.module = "Ciphers"; + this.description = "Twofish is a symmetric key block cipher designed by Bruce Schneier. It was one of the five AES finalists. Twofish operates on 128-bit blocks and supports key sizes of 128, 192, or 256 bits with 16 rounds of a Feistel network.

When using CBC or ECB mode, the PKCS#7 padding scheme is used."; + this.infoURL = "https://wikipedia.org/wiki/Twofish"; + this.inputType = "string"; + this.outputType = "string"; + this.args = [ + { + "name": "Key", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "IV", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "Mode", + "type": "option", + "value": ["CBC", "CFB", "OFB", "CTR", "ECB"] + }, + { + "name": "Input", + "type": "option", + "value": ["Hex", "Raw"] + }, + { + "name": "Output", + "type": "option", + "value": ["Raw", "Hex"] + }, + { + "name": "Padding", + "type": "option", + "value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"] + } + ]; + } + + /** + * @param {string} input + * @param {Object[]} args + * @returns {string} + */ + run(input, args) { + const key = Utils.convertToByteArray(args[0].string, args[0].option), + iv = Utils.convertToByteArray(args[1].string, args[1].option), + [,, mode, inputType, outputType, padding] = args; + + if (key.length !== 16 && key.length !== 24 && key.length !== 32) + throw new OperationError(`Invalid key length: ${key.length} bytes + +Twofish uses a key length of 16 bytes (128 bits), 24 bytes (192 bits), or 32 bytes (256 bits).`); + + if (iv.length !== 16 && mode !== "ECB") + throw new OperationError(`Invalid IV length: ${iv.length} bytes + +Twofish uses an IV length of 16 bytes (128 bits). +Make sure you have specified the type correctly (e.g. Hex vs UTF8).`); + + input = Utils.convertToByteArray(input, inputType); + const output = decryptTwofish(input, key, iv, mode, padding); + return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output); + } + +} + +export default TwofishDecrypt; diff --git a/src/core/operations/TwofishEncrypt.mjs b/src/core/operations/TwofishEncrypt.mjs new file mode 100644 index 00000000..e8e3f16f --- /dev/null +++ b/src/core/operations/TwofishEncrypt.mjs @@ -0,0 +1,94 @@ +/** + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import Operation from "../Operation.mjs"; +import Utils from "../Utils.mjs"; +import OperationError from "../errors/OperationError.mjs"; +import { toHex } from "../lib/Hex.mjs"; +import { encryptTwofish } from "../lib/Twofish.mjs"; + +/** + * Twofish Encrypt operation + */ +class TwofishEncrypt extends Operation { + + /** + * TwofishEncrypt constructor + */ + constructor() { + super(); + + this.name = "Twofish Encrypt"; + this.module = "Ciphers"; + this.description = "Twofish is a symmetric key block cipher designed by Bruce Schneier. It was one of the five AES finalists. Twofish operates on 128-bit blocks and supports key sizes of 128, 192, or 256 bits with 16 rounds of a Feistel network.

When using CBC or ECB mode, the PKCS#7 padding scheme is used."; + this.infoURL = "https://wikipedia.org/wiki/Twofish"; + this.inputType = "string"; + this.outputType = "string"; + this.args = [ + { + "name": "Key", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "IV", + "type": "toggleString", + "value": "", + "toggleValues": ["Hex", "UTF8", "Latin1", "Base64"] + }, + { + "name": "Mode", + "type": "option", + "value": ["CBC", "CFB", "OFB", "CTR", "ECB"] + }, + { + "name": "Input", + "type": "option", + "value": ["Raw", "Hex"] + }, + { + "name": "Output", + "type": "option", + "value": ["Hex", "Raw"] + }, + { + "name": "Padding", + "type": "option", + "value": ["PKCS5", "NO", "ZERO", "RANDOM", "BIT"] + } + ]; + } + + /** + * @param {string} input + * @param {Object[]} args + * @returns {string} + */ + run(input, args) { + const key = Utils.convertToByteArray(args[0].string, args[0].option), + iv = Utils.convertToByteArray(args[1].string, args[1].option), + [,, mode, inputType, outputType, padding] = args; + + if (key.length !== 16 && key.length !== 24 && key.length !== 32) + throw new OperationError(`Invalid key length: ${key.length} bytes + +Twofish uses a key length of 16 bytes (128 bits), 24 bytes (192 bits), or 32 bytes (256 bits).`); + + if (iv.length !== 16 && mode !== "ECB") + throw new OperationError(`Invalid IV length: ${iv.length} bytes + +Twofish uses an IV length of 16 bytes (128 bits). +Make sure you have specified the type correctly (e.g. Hex vs UTF8).`); + + input = Utils.convertToByteArray(input, inputType); + const output = encryptTwofish(input, key, iv, mode, padding); + return outputType === "Hex" ? toHex(output, "") : Utils.byteArrayToUtf8(output); + } + +} + +export default TwofishEncrypt; diff --git a/tests/operations/index.mjs b/tests/operations/index.mjs index f147e9e7..baf965e9 100644 --- a/tests/operations/index.mjs +++ b/tests/operations/index.mjs @@ -128,6 +128,7 @@ import "./tests/ParseUDP.mjs"; import "./tests/PEMtoHex.mjs"; import "./tests/PGP.mjs"; import "./tests/PHP.mjs"; +import "./tests/PRESENT.mjs"; import "./tests/PHPSerialize.mjs"; import "./tests/PowerSet.mjs"; import "./tests/Protobuf.mjs"; @@ -163,6 +164,7 @@ import "./tests/Template.mjs"; import "./tests/TextEncodingBruteForce.mjs"; import "./tests/ToFromInsensitiveRegex.mjs"; import "./tests/TranslateDateTimeFormat.mjs"; +import "./tests/Twofish.mjs"; import "./tests/Typex.mjs"; import "./tests/UnescapeString.mjs"; import "./tests/Unicode.mjs"; diff --git a/tests/operations/tests/PRESENT.mjs b/tests/operations/tests/PRESENT.mjs new file mode 100644 index 00000000..f581d22f --- /dev/null +++ b/tests/operations/tests/PRESENT.mjs @@ -0,0 +1,465 @@ +/** + * PRESENT cipher tests. + * + * Test vectors from the original PRESENT paper: + * "PRESENT: An Ultra-Lightweight Block Cipher" + * https://link.springer.com/chapter/10.1007/978-3-540-74735-2_31 + * https://www.iacr.org/archive/ches2007/47270450/47270450.pdf + * + * Note: PKCS5 padding adds an extra block when input is exactly block-aligned. + * Round-trip tests verify correct encryption/decryption behavior. + * + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import TestRegister from "../../lib/TestRegister.mjs"; + +TestRegister.addTests([ + // ============================================================ + // OFFICIAL TEST VECTORS from the original PRESENT paper: + // "PRESENT: An Ultra-Lightweight Block Cipher" (Bogdanov et al., CHES 2007) + // https://link.springer.com/chapter/10.1007/978-3-540-74735-2_31 + // Table 3: Test Vectors + // ============================================================ + { + name: "PRESENT Official Vector 1: 80-bit zero key, zero plaintext", + input: "0000000000000000", + expectedOutput: "5579c1387b228445", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 2: 80-bit all-ones key, zero plaintext", + input: "0000000000000000", + expectedOutput: "e72c46c0f5945049", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "ffffffffffffffffffff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 3: 80-bit zero key, all-ones plaintext", + input: "ffffffffffffffff", + expectedOutput: "a112ffc72f68417b", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 4: 80-bit all-ones key, all-ones plaintext", + input: "ffffffffffffffff", + expectedOutput: "3333dcd3213210d2", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "ffffffffffffffffffff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 5: 128-bit zero key, zero plaintext", + input: "0000000000000000", + expectedOutput: "96db702a2e6900af", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 6: 128-bit key (SageMath reference)", + input: "0123456789abcdef", + expectedOutput: "0e9d28685e671dd6", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "0123456789abcdef0123456789abcdef", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + // Decrypt verification of official vectors + { + name: "PRESENT Official Vector 1 Decrypt: 80-bit zero key", + input: "5579c1387b228445", + expectedOutput: "0000000000000000", + recipeConfig: [ + { + op: "PRESENT Decrypt", + args: [ + { string: "00000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 4 Decrypt: 80-bit all-ones key", + input: "3333dcd3213210d2", + expectedOutput: "ffffffffffffffff", + recipeConfig: [ + { + op: "PRESENT Decrypt", + args: [ + { string: "ffffffffffffffffffff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 5 Decrypt: 128-bit zero key", + input: "96db702a2e6900af", + expectedOutput: "0000000000000000", + recipeConfig: [ + { + op: "PRESENT Decrypt", + args: [ + { string: "00000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "PRESENT Official Vector 6 Decrypt: 128-bit key (SageMath reference)", + input: "0e9d28685e671dd6", + expectedOutput: "0123456789abcdef", + recipeConfig: [ + { + op: "PRESENT Decrypt", + args: [ + { string: "0123456789abcdef0123456789abcdef", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + // ============================================================ + // Round-trip tests - These verify encryption and decryption work correctly + // ============================================================ + { + name: "PRESENT Round-trip: ECB 80-bit key, short message", + input: "Hello!!!", + expectedOutput: "Hello!!!", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: CBC 80-bit key, long message", + input: "The quick brown fox jumps over the lazy dog", + expectedOutput: "The quick brown fox jumps over the lazy dog", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "aabbccddeeff00112233", option: "Hex" }, + { string: "0011223344556677", option: "Hex" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "aabbccddeeff00112233", option: "Hex" }, + { string: "0011223344556677", option: "Hex" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: ECB 128-bit key", + input: "Testing PRESENT cipher with 128-bit key", + expectedOutput: "Testing PRESENT cipher with 128-bit key", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: CBC 128-bit key", + input: "PRESENT is an ultra-lightweight block cipher!", + expectedOutput: "PRESENT is an ultra-lightweight block cipher!", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + { string: "8877665544332211", option: "Hex" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + { string: "8877665544332211", option: "Hex" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: UTF8 key (10 bytes)", + input: "Secret message", + expectedOutput: "Secret message", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "mypassword", option: "UTF8" }, + { string: "initvect", option: "UTF8" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "mypassword", option: "UTF8" }, + { string: "initvect", option: "UTF8" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Encryption consistency tests - verify same input always produces same output + { + name: "PRESENT Encrypt: 80-bit zero key consistency", + input: "TestData", + expectedOutput: "b78cfea5ffcd89f265585a6ce7312131", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Encrypt: 128-bit zero key consistency", + input: "TestData", + expectedOutput: "e127a24e38de2c36407e794ef5dffefd", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: Various lengths 1 byte", + input: "A", + expectedOutput: "A", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: Various lengths 7 bytes", + input: "1234567", + expectedOutput: "1234567", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: Various lengths 8 bytes (exact block)", + input: "12345678", + expectedOutput: "12345678", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: Various lengths 9 bytes", + input: "123456789", + expectedOutput: "123456789", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: Various lengths 16 bytes (two blocks)", + input: "1234567890ABCDEF", + expectedOutput: "1234567890ABCDEF", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "00112233445566778899", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "PRESENT Round-trip: Binary data", + input: "\x00\x01\x02\x03\x04\x05\x06\x07", + expectedOutput: "\x00\x01\x02\x03\x04\x05\x06\x07", + recipeConfig: [ + { + op: "PRESENT Encrypt", + args: [ + { string: "ffeeddccbbaa99887766", option: "Hex" }, + { string: "0011223344556677", option: "Hex" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "PRESENT Decrypt", + args: [ + { string: "ffeeddccbbaa99887766", option: "Hex" }, + { string: "0011223344556677", option: "Hex" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + } +]); diff --git a/tests/operations/tests/Twofish.mjs b/tests/operations/tests/Twofish.mjs new file mode 100644 index 00000000..d92fd0ea --- /dev/null +++ b/tests/operations/tests/Twofish.mjs @@ -0,0 +1,486 @@ +/** + * Twofish cipher tests. + * + * Test vectors from the official Twofish paper: + * https://www.schneier.com/academic/twofish/ + * + * Note: PKCS5 padding adds an extra block when input is exactly block-aligned. + * Round-trip tests verify correct encryption/decryption behavior. + * + * @author Medjedtxm + * @copyright Crown Copyright 2026 + * @license Apache-2.0 + */ + +import TestRegister from "../../lib/TestRegister.mjs"; + +TestRegister.addTests([ + // ============================================================ + // OFFICIAL TEST VECTORS from Bruce Schneier's Twofish paper: + // https://www.schneier.com/academic/twofish/ + // https://www.schneier.com/wp-content/uploads/2015/12/ecb_ival.txt + // ============================================================ + { + name: "Twofish Official Vector: 128-bit zero key, zero plaintext", + input: "00000000000000000000000000000000", + expectedOutput: "9f589f5cf6122c32b6bfec2f2ae8c35a", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "Twofish Official Vector: 192-bit zero key, zero plaintext", + input: "00000000000000000000000000000000", + expectedOutput: "efa71f788965bd4453f860178fc19101", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "000000000000000000000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + { + name: "Twofish Official Vector: 256-bit zero key, zero plaintext", + input: "00000000000000000000000000000000", + expectedOutput: "57ff739d4dc92c1bd7fc01700cc8216f", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "0000000000000000000000000000000000000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + // Decrypt verification of official vectors + { + name: "Twofish Official Vector Decrypt: 128-bit zero key", + input: "9f589f5cf6122c32b6bfec2f2ae8c35a", + expectedOutput: "00000000000000000000000000000000", + recipeConfig: [ + { + op: "Twofish Decrypt", + args: [ + { string: "00000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Hex", "NO" + ] + } + ] + }, + // ============================================================ + // Round-trip tests for ECB mode with various key sizes + // ============================================================ + { + name: "Twofish Round-trip: ECB 128-bit key", + input: "Hello, World!!!", + expectedOutput: "Hello, World!!!", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: ECB 192-bit key", + input: "Testing Twofish with 192-bit key", + expectedOutput: "Testing Twofish with 192-bit key", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: ECB 256-bit key", + input: "Testing Twofish with 256-bit key encryption", + expectedOutput: "Testing Twofish with 256-bit key encryption", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Round-trip tests for CBC mode + { + name: "Twofish Round-trip: CBC 128-bit key", + input: "The quick brown fox jumps over the lazy dog", + expectedOutput: "The quick brown fox jumps over the lazy dog", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: CBC 192-bit key", + input: "Testing Twofish with 192-bit key in CBC mode", + expectedOutput: "Testing Twofish with 192-bit key in CBC mode", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f1011121314151617", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: CBC 256-bit key", + input: "Testing Twofish with 256-bit key in CBC mode", + expectedOutput: "Testing Twofish with 256-bit key in CBC mode", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Round-trip tests for CFB mode + { + name: "Twofish Round-trip: CFB 128-bit key", + input: "Testing Twofish CFB mode encryption", + expectedOutput: "Testing Twofish CFB mode encryption", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "deadbeefcafebabe0123456789abcdef", option: "Hex" }, + { string: "0102030405060708090a0b0c0d0e0f10", option: "Hex" }, + "CFB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "deadbeefcafebabe0123456789abcdef", option: "Hex" }, + { string: "0102030405060708090a0b0c0d0e0f10", option: "Hex" }, + "CFB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Round-trip tests for OFB mode + { + name: "Twofish Round-trip: OFB 128-bit key", + input: "Testing Twofish OFB mode encryption", + expectedOutput: "Testing Twofish OFB mode encryption", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "OFB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + "OFB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Round-trip tests for CTR mode + { + name: "Twofish Round-trip: CTR 128-bit key", + input: "Testing Twofish CTR mode encryption", + expectedOutput: "Testing Twofish CTR mode encryption", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "00000000000000000000000000000001", option: "Hex" }, + "CTR", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "00000000000000000000000000000001", option: "Hex" }, + "CTR", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // UTF8 key tests + { + name: "Twofish Round-trip: UTF8 key (16 bytes)", + input: "Secret message!", + expectedOutput: "Secret message!", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "MySecretPassword", option: "UTF8" }, + { string: "InitVectorHere!!", option: "UTF8" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "MySecretPassword", option: "UTF8" }, + { string: "InitVectorHere!!", option: "UTF8" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Various input length tests + { + name: "Twofish Round-trip: 1 byte input", + input: "A", + expectedOutput: "A", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: 15 byte input", + input: "123456789012345", + expectedOutput: "123456789012345", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: 16 byte input (exact block)", + input: "1234567890123456", + expectedOutput: "1234567890123456", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: 17 byte input", + input: "12345678901234567", + expectedOutput: "12345678901234567", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + { + name: "Twofish Round-trip: 32 byte input (two blocks)", + input: "12345678901234567890123456789012", + expectedOutput: "12345678901234567890123456789012", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Binary data test + { + name: "Twofish Round-trip: Binary data", + input: "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + expectedOutput: "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + "CBC", "Raw", "Hex", "PKCS5" + ] + }, + { + op: "Twofish Decrypt", + args: [ + { string: "ffeeddccbbaa99887766554433221100", option: "Hex" }, + { string: "00112233445566778899aabbccddeeff", option: "Hex" }, + "CBC", "Hex", "Raw", "PKCS5" + ] + } + ] + }, + + // Consistency test - same input should always produce same output + { + name: "Twofish Encrypt: 128-bit key consistency test", + input: "TestData12345678", + expectedOutput: "8aed2d3a85dc3e0b663ba1fe1fdaf056771d591428af301d69fa1e227d083527", + recipeConfig: [ + { + op: "Twofish Encrypt", + args: [ + { string: "00000000000000000000000000000000", option: "Hex" }, + { string: "", option: "Hex" }, + "ECB", "Raw", "Hex", "PKCS5" + ] + } + ] + } +]); From aa9767763d8fc0056edb02fa24be6cb9b9330a67 Mon Sep 17 00:00:00 2001 From: Medjedtxm Date: Sat, 10 Jan 2026 21:21:53 -0500 Subject: [PATCH 2/2] fix: spelling --- src/core/lib/Present.mjs | 2 +- src/core/operations/PRESENTDecrypt.mjs | 2 +- src/core/operations/PRESENTEncrypt.mjs | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/src/core/lib/Present.mjs b/src/core/lib/Present.mjs index 72f8e9ef..ffb6bf57 100644 --- a/src/core/lib/Present.mjs +++ b/src/core/lib/Present.mjs @@ -3,7 +3,7 @@ * ECB and CBC block modes. * * PRESENT is an ultra-lightweight block cipher designed for constrained environments. - * Standardized in ISO/IEC 29192-2:2019. + * Standardised in ISO/IEC 29192-2:2019. * * Reference: "PRESENT: An Ultra-Lightweight Block Cipher" * https://link.springer.com/chapter/10.1007/978-3-540-74735-2_31 diff --git a/src/core/operations/PRESENTDecrypt.mjs b/src/core/operations/PRESENTDecrypt.mjs index 16629c51..54d62995 100644 --- a/src/core/operations/PRESENTDecrypt.mjs +++ b/src/core/operations/PRESENTDecrypt.mjs @@ -23,7 +23,7 @@ class PRESENTDecrypt extends Operation { this.name = "PRESENT Decrypt"; this.module = "Ciphers"; - this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardized in ISO/IEC 29192-2:2019.

When using CBC mode, the PKCS#7 padding scheme is used."; + this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardised in ISO/IEC 29192-2:2019.

When using CBC mode, the PKCS#7 padding scheme is used."; this.infoURL = "https://wikipedia.org/wiki/PRESENT_(cipher)"; this.inputType = "string"; this.outputType = "string"; diff --git a/src/core/operations/PRESENTEncrypt.mjs b/src/core/operations/PRESENTEncrypt.mjs index f5d82aad..2a02c3d3 100644 --- a/src/core/operations/PRESENTEncrypt.mjs +++ b/src/core/operations/PRESENTEncrypt.mjs @@ -23,7 +23,7 @@ class PRESENTEncrypt extends Operation { this.name = "PRESENT Encrypt"; this.module = "Ciphers"; - this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardized in ISO/IEC 29192-2:2019.

When using CBC mode, the PKCS#7 padding scheme is used."; + this.description = "PRESENT is an ultra-lightweight block cipher designed for constrained environments such as RFID tags and sensor networks. It operates on 64-bit blocks and supports 80-bit or 128-bit keys with 31 rounds. Standardised in ISO/IEC 29192-2:2019.

When using CBC mode, the PKCS#7 padding scheme is used."; this.infoURL = "https://wikipedia.org/wiki/PRESENT_(cipher)"; this.inputType = "string"; this.outputType = "string";